ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Foraminifera  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA2211, doi:10.1029/2009PA001846.
    Description: Carbon isotopes of foraminiferal tests provide a widely used proxy for past oceanographic environmental conditions. This proxy can be calibrated using live specimens, which are reliably identified with observations of cell ultrastructure. Observations of ultrastructures can also be used for studies of biological characteristics such as diet and presence of symbionts. Combining biological and isotopic studies on individual foraminifera could provide novel information, but standard isotopic methods destroy ultrastructures by desiccating specimens and observations of ultrastructure require removal of carbonate tests, preventing isotope measurements. The approach described here preserves cellular ultrastructure during isotopic analyses by keeping the foraminifera in an aqueous buffer (Phosphate Buffered Saline (PBS)). The technique was developed and standardized with 36 aliquots of NBS-19 standard of similar weight to foraminiferal tests (5 to 123 μg). Standard errors ranged from ± 0.06 to ± 0.85‰ and were caused by CO2 contaminants dissolved in the PBS. The technique was used to measure δ13C values of 96 foraminifera, 10 of which do not precipitate carbonate tests. Calcareous foraminiferal tests had corrected carbon isotope ratios of −8.5 to +3.2‰. This new technique allows comparisons of isotopic compositions of tests made by foraminifera known to be alive at the time of collection with their biological characteristics such as prey composition and presence or absence of putative symbionts. The approach may be applied to additional biomineralizing organisms such as planktonic foraminifera, pteropods, corals, and coccolithophores to elucidate certain biological controls on their paleoceanographic proxy signatures.
    Description: Support was provided by NSF grants OCE‐0550396 (to J.B.M.), OCE‐0551001 (to J.M.B.), and OCE‐ 0550401 (to A.E.R.).
    Keywords: Foraminifera ; Ultrastructure ; Carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4206, doi:10.1029/2010PA001930.
    Description: Numerous previous studies show disequilibrium between stable carbon isotope ratios of foraminiferal calcite and pore water dissolved inorganic carbon in hydrocarbon seeps, calling into question the utility of this widely used paleoceanographic tracer as a proxy. We use a recently developed method to compare stable carbon isotope ratios of foraminiferal carbonate with cell ultrastructural observations from individual benthic foraminifera from seep (under chemosynthetic bivalves) and nonseep habitats in Monterey Bay, California, to better understand control(s) of benthic foraminiferal carbon isotope ratios. Two attributes previously proposed to cause the isotopic offsets are diet and symbionts. Ultrastructural analysis shows that positive staining with Rose Bengal indicates presence of foraminiferal cytoplasm, bacterial biomass, or a combination of both and, thus, is not an unequivocal indicator of viability. We also show for the first time that some living seep foraminifera have endobionts. Results from our unique, yet limited, data set are consistent with suggestions that, in our sites, several foraminiferal species collected from seep clam beds may not survive there, diet and symbiont presence do not appear to be major contributors to disequilibrium, little calcification of seep-tolerant foraminiferal species occurs while seep conditions prevail, and microscale variability in habitats could influence δ13C of benthic foraminiferal carbonate. Results further suggest that our knowledge of benthic foraminiferal ecology and biomineralization, especially in extreme habitats such as seeps, must be bolstered before we fully understand the fidelity of paleoenvironmental records derived from benthic foraminiferal test δ13C data.
    Description: This collaborative research was supported by NSF Marine Geology and Geophysics Program (OCE‐0551001 (to J.M.B), OCE‐0550396 (to J.B.M.), and OCE‐0550401 (to A.E.R.)).
    Keywords: Clam Flats ; Monterey Bay ; Carbon isotopes ; Disequilibrium ; Foraminifera ; Cold seep
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...