ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-03
    Description: Satellite remote sensing techniques and lava flow forecasting models have been combined to enable a rapid response during effusive crises at poorly monitored volcanoes. Here we used the HOTSAT satellite thermal monitoring system and the MAGFLOW lava flow emplacement model to forecast lava flow hazards during the 2014–2015 Fogo eruption. In many ways this was one of the major effusive eruption crises of recent years, since the lava flows actually invaded populated areas. Combining satellite data and modeling allowed mapping of the probable evolution of lava flow fields while the eruption was ongoing and rapidly gaining as much relevant information as possible. HOTSAT was used to promptly analyze MODIS and SEVIRI data to output hot spot location, lava thermal flux, and effusion rate estimation. This output was used to drive the MAGFLOW simulations of lava flow paths and to continuously update flow simulations. We also show how Landsat 8 OLI and EO-1 ALI images complement the field observations for tracking the flow front position through time and adding considerable data on lava flow advancement to validate the results of numerical simulations. The integration of satellite data and modeling offers great promise in providing a unified and efficient system for global assessment and real-time response to effusive eruptions, including (i) the current state of the effusive activity, (ii) the probable evolution of the lava flow field, and (iii) the potential impact of lava flows.
    Description: Acknowledgments Thanks are due to European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) for SEVIRI data (www.eumetsat.int) and to National Aeronautics and Space Administration (NASA) for MODIS data (modis.gsfc.nasa.gov). Landsat 8 OLI and Eo-1 ALI images are courtesy of the U.S. Geological Survey (earthexplorer. usgs.gov). We are grateful to the Copernicus emergency management service (emergency.copernicus.eu/ mapping/list-of-components/EMSR111) for mapping the actual lava flow field by Cosmo-SkyMed and Pleiades images. We thank the Cartográfica de Canarias, S.A. (www.grafcan.es) for making the Digital Elevation Model of Fogo Island available. HOTSAT and MAGFLOW were developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics, organized by INGV-CT and UNICT (Italy).
    Description: Published
    Description: 2290–2303
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Fogo eruption ; lava flow hazard ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...