ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-21
    Description: Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better modeling approaches for these turbulent flow fields where accurate calculation of turbulent heat flux is important. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity as well as the mean temperature and root mean square (rms) temperatures in a film cooling flow field. In addition to off-body flow field measurements, infrared thermography (IR) and thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures (up to TR = 2.7) and Mach numbers (up to M0.9), across a 30.48 cm long plate equipped with three patches of 45 small (~1 mm) diameter cooling holes arranged in a staggered configuration. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 14 axial stations were collected in the same flows. Only a subset of the data collected in the test program is included in this Part I report and are available from the NASA STI office. The final portion of the data will be published in a future report, Part II, along with CFD predictions of the complex cooling film flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220227/PART1 , GRC-E-DAA-TN69722 , E-19711
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Current CFD modeling techniques are known to do a poor job of predicting the mixing rate and persistence of slot film flow in co-annular flowing ducts with relatively small velocity differences but large thermal gradients. A co-annular test was devised to empirically determine the mixing rate of slot film flow in a constant area circular duct (D approx. 1ft, L approx. 10ft). The axial rate of wall heat-up is a sensitive measure of the mixing rate of the two flows. The inflow conditions were varied to simulate a variety of conditions characteristic of moderate by-pass ratio engines. A series of air temperature measurements near the duct wall provided a straightforward means to measure the axial temperature distribution and thus infer the mixing rate. This data provides a characterization of the slot film mixing rates encountered in typical jet engine environments. The experimental geometry and entrance conditions, along with the sensitivity of the results as the entrance conditions vary, make this a good test for turbulence models in a regime important to modern air-breathing propulsion research and development.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2013-1074 , 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2001-210811 , E-12726 , NAS 1.15:210811
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2015-218741 , E-19074 , GRC-E-DAA-TN20935 , AIAA Aviation Technology, Integration, and Operations Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2001-210762 , NAS 1.15:210762 , E-12725 , AIAA Paper 2001-0289 , 39th Aerospace Sciences Meeting and Exhibit; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: In the context of Large- Eddy Simulations (LES), Boundary-layer inflow turbulence is simulated using both the Synthetic Eddy Model (SEM) and Digital Filtering (DF). The effects of the projection error are investigated. The effect of the prescribed length scales on the adjustment region was found to be negligible for length scales less than one-tenth of the boundary-layer thickness. While it was conjectured that one method of the two might be more robust than the other, our results show that both the Digital Filtering Method and the Synthetic Eddy Method accurately replicate the boundary layer while successfully accounting for inflow turbulence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN59196 , E-19576 , NASA/TM-2018- 219966
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: This study investigates the sidewall effect on flow within the mixing duct downstream of a lobed mixer-ejector nozzle. Simulations which model only one half-chute width of the ejector array are compared with those which model one complete quadrant of the nozzle geometry and with available experimental data. These solutions demonstrate the applicability of the half-chute technique to model the flowfield far away from the sidewall and the necessity of a full-quadrant simulation to predict the formation of a low-energy flow region near the sidewall. The quadrant solutions are further examined to determine the cause of this low-energy region, which reduces the amount of mixing and lowers the thrust of the nozzle. Grid resolution and different grid topologies are also examined. Finally, an assessment of the half-chute and quadrant approaches is made to determine the ability of these simulations to provide qualitative and/or quantitative predictions for this type of complex flowfield.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2005-213602 , E?15069 , HSR-071
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215507 , AIAA Paper-2008-3969 , E-16672 , 38th Fluid Dynamics Conference and Exhibit; Jun 23, 2008 - Jun 26, 2008; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Modifications to key coefficients in a k E based explicit algebraic stress model (EASM) are examined with the objective of improving the prediction of turbulent jet flows. The pressure strain coefficient, C2 and the turbulent diffusion coefficients, k and E were investigated. For a series of benchmark subsonic jets at heated and unheated conditions, lowering C2 from the default value of 0.36 to 0.10 resulted in a significant improvement in the jet mixing, when compared to experimental data. Changing k and E from default values of 1.00 and 1.4489, respectively, to 0.50 and 0.7244, respectively, improved the initial mixing rate, while reducing the farfield mixing rate and the peak turbulent kinetic energy along the centerline. A high-speed mixing layer was also investigated for performance of baseline and modified EASM coefficients, with similar results as for the jet cases. A flat plate boundary layer was briefly examined to determine the effects of changing the coefficients on the turbulent skin friction coefficient. The change to the pressure strain coefficient, C2 = 0.10 is recommended for future EASM calculation of jets flow; however, it is also recommended that the diffusion coefficients remain at their default values.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM—2019-219978 , AIAA Paper 2019–0325 , E-19661 , GRC-E-DAA-TN65223 , 2019 Science and Technology Forum (SciTech); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...