ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear interaction. Furthermore, the steady state distribution of energy again follows a Kolmogorov scaling law; in this case the ripple energy is distributed according to 1/k (sup 7/4). Again, in parallel with vortex turbulence ripple turbulence exhibits intermittency. The problem of ripple turbulence presents an experimental opportunity to generate data in a controlled, benchmarked system. In particular the surface of a sphere is an ideal environment to study ripple turbulence. Waves run around the sphere and interact with each other, and the effect of walls is eliminated. In microgravity this state can be realized for over 2 decades of frequency. Wave turbulence is a physically relevant problem in its own right. It has been studied on the surface of liquid hydrogen and its application to Alfven waves in space is a source of debate. Of course, application of wave turbulence perspectives to ocean waves has been a major success. The experiment which we plan to run in microgravity is conceptually straightforward. Ripples are excited on the surface of a spherical drop of fluid and then their amplitude is recorded with appropriate photography. A key challenge is posed by the need to stably position a 10cm diameter sphere of water in microgravity. Two methods are being developed. Orbitec is using controlled puffs of air from at least 6 independent directions to provided the positioning force. This approach has actually succeeded to position and stabilize a 4cm sphere during a KC 135 segment. Guigne International is using the radiation pressure of high frequency sound. These transducers have been organized into a device in the shape of a dodecahedron. This apparatus 'SPACE DRUMS' has already been approved for use for combustion synthesis experiments on the International Space Station. A key opportunity presented by the ripple turbulence data is its use in driving the development of codes to simulate its properties.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Sixth Microgravity Fluid Physics and Transport Phenomena Conference; Volume 1; 832-854; NASA/CP-2002-211212/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Important issues: Mass gauging; Stability dynamics of disconnected capillary surfaces; Slow capillary driven flow (i.e. wicking); Long-term material property evolution in micro-g; Dumping problem with freezing of dump lines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems; 39-43; NASA/TM-2003-212598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: An investigation at a free-stream Mach number of 2.02 was made to determine the effects of a propulsive jet on a wing surface located in the vicinity of a choked convergent nozzle. Static-pressure surveys were made on a flat surface that was located in the vicinity of the propulsive jet. The nozzle was operated over a range of exit pressure ratios at different fixed vertical distances from the flat surface. Within the scope of this investigation, it was found that shock waves, formed in the external flow because of the presence of the propulsive jet, impinged on the flat surface and greatly altered the pressure distribution. An integration of this pressure distribution, with the location of the propulsive jet exit varied from 1.450 propulsive-jet exit diameters to 3.392 propulsive-jet exit diameters below the wing, resulted in an incremental lift for all jet locations that was equal to the gross thrust at an exit pressure ratio of 2.86. This incremental lift increased with increase in exit pressure ratio, but not so rapidly as the thrust increased, and was approximately constant at any given exit pressure ratio.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L54E05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-26
    Description: Local values of heat transfer coefficients have been measured experimentally for helium and hydrogen gas flowing through an electrically heated inconel tube. The experiment was conducted primarily to determine the effect on the heat transfer coefficient of a large density change, radially, in the heat transfer fluid. This large density change was accomplished with relatively high surface temperatures as compared to fluid bulk temperatures or more commonly referred to as high surface to fluid bulk temperature ratio. The large temperature ratio was achieved by precooling the gas with liquid nitrogen. Data were measured for local values of surface to fluid bulk temperature ratios up to 4.5, Reynolds numbers in the turbulent flow region, surface temperatures up to 2300 R, heat flux up to 1,600,000 Btu/(hr)(sq ft) and length to diameter ratio of 250. A comparison of this data with the conventional heat transfer correlation equation (Dittus-Boelter eq.) is shown on a curve of Nusselt number divided by Prandtl number versus the Reynolds number. The gas properties were evaluated at the film temperature and the Reynolds number was modified by evaluating the velocity term at the fluid bulk temperature and the density at the film temperature.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-1721 , GRC-E-DAA-TN67415
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A computational fluid dynamic (CFD) study is performed on the Hyper-X (X-43A) Launch Vehicle stack configuration in support of the aerodynamic database generation in the transonic to hypersonic flow regime. The main aim of the study is the evaluation of a CFD method that can be used to support aerodynamic database development for similar future configurations. The CFD method uses the NASA Langley Research Center developed TetrUSS software, which is based on tetrahedral, unstructured grids. The Navier-Stokes computational method is first evaluated against a set of wind tunnel test data to gain confidence in the code s application to hypersonic Mach number flows. The evaluation includes comparison of the longitudinal stability derivatives on the complete stack configuration (which includes the X-43A/Hyper-X Research Vehicle, the launch vehicle and an adapter connecting the two), detailed surface pressure distributions at selected locations on the stack body and component (rudder, elevons) forces and moments. The CFD method is further used to predict the stack aerodynamic performance at flow conditions where no experimental data is available as well as for component loads for mechanical design and aero-elastic analyses. An excellent match between the computed and the test data over a range of flow conditions provides a computational tool that may be used for future similar hypersonic configurations with confidence.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-5385 , 22nd AIAA Applied Aerodynamics Conference and Exhibit; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 99-1262 , AIAA/ASME/ASCE/AHS/ASC; Apr 12, 1999 - Apr 15, 1999; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 9th International Planetary Probe Workshop (IPPW-9); Jun 18, 2012 - Jun 22, 2012; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: BWB Aircraft with embedded engines and BLI inlets offer attractive advantages in terms of reduced noise from engines and increased range and fuel economy. The BLI inlet produces inlet distortion patterns that can reduce fan performance and stall margin, and can produce undesirable forced responses. Knowledge of the dynamic response of fan flow when subjected to flow distortions of the type produced by BLI inlets is important for the design of distortion tolerant fans. This project is investigating fan response to flow distortion by measuring the response of the fan of a JT15D engine to a flow pattern following the results of the NASA Inlet A BLI wind tunnel tests.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-18406 , NASA Fundamental Aeronautics Program Technical Conference; Mar 15, 2011 - Mar 17, 2011; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-20722 , ASNT Fall Conference 2010; Nov 15, 2010 - Nov 19, 2010; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Neutral Buoyancy Laboratory (NBL) is a 102 x 202 x 40-foot-deep tank holding over 6 million gallons of water used to simulate weightlessness for Astronaut training. The maxim "Train Like You Fly" refers to the desire to have the suit perform, during training, as close as possible to how it performs during an Extra-Vehicular Activity (EVA), particularly with respect to mobility. Therefore, the Space Suit Assembly (SSA) used in the NBL is a downgraded hardware version of the flight SSA; it is not designed for the NBL environment or operations. A classification system defines the flight Space Suit Assembly hardware as Class I, and the NBL training hardware SSA as Class IIIW. On July 20, 2017, during a manned training event in the NBL, the SSA was inadvertently over-pressurized to 22 psid; normal operating pressure being 4.3 psid. The suit subject was removed from the suit with no injury. The event was investigated by a NASA Mishap Team. The Team investigated common causes and differences between the Class I and Class IIIW Extra-vehicular Mobility Unit (EMU). The investigation determined that the event was limited to Class IIIW hardware and its external flow-controlled open loop ventilation systems. The flight EMU is a pressure regulated closed loop ventilation system. This paper will examine the differences between the Class I and Class IIIW SSA hardware and provide details of the Mishap Investigation. Corrective actions taken to mitigate risk with hardware, operations, and hazard documentation will be discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ICES-2018-290 , JSC-E-DAA-TN56582 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Abuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...