ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.
    Keywords: Fluid Mechanics and Thermodynamics; Spacecraft Design, Testing and Performance
    Type: NF1676L-21679 , Thermal and Fluids Analysis Workshop; Aug 03, 2015 - Aug 07, 2015; Silver Spring, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Accurately predicting fastener preload relaxation in the James Webb Space Telescope (JWST) heat strap assemblies is essential to insure adequate thermal performance during its mission lifecycle. The mechanisms for preload relaxation in the strap joints include Al-1100 material creep, indium gasket flow-out, and embedment of the joint faying surfaces. This report documents the results from a bolted joint relaxation test, including analysis and curve fitting of the test data for predicting preloads five years after initial torque application. The report also includes the derivation of a preload uncertainty factor enveloping both torque/preload application scatter and expected preload relaxation at the end of mission life.
    Keywords: Fluid Mechanics and Thermodynamics; Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN55394 , Aerospace Mechanisms Symposium; May 16, 2017 - May 18, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Accurately predicting fastener preload relaxation in the James Webb Space Telescope (JWST) heat strap assemblies is essential to insure adequate thermal performance during its mission lifecycle. The mechanisms for preload relaxation in the strap joints include Al-1100 material creep, indium gasket flow-out, and embedment of the joint faying surfaces. This report documents the results from a bolted joint relaxation test, including analysis and curve fitting of the test data for predicting preloads five years after initial torque application. The report also includes the derivation of a preload uncertainty factor enveloping both torque/preload application scatter and expected preload relaxation at the end of mission life.
    Keywords: Fluid Mechanics and Thermodynamics; Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN51728 , Aerospace Mechanisms Symposium; May 16, 2018 - May 18, 2018; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...