ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-30
    Description: NASAs Transformational Tools and Technologies Programs Juncture Flow experiment aims to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. The experiment is planned to provide validation-quality data for CFD that focuses on the separation bubble near the wing-body juncture trailing edge region. Because wind tunnel tests associated with the Juncture Flow project have been designed for the purpose of CFD validation, considerable effort is going into modeling and simulating the wind tunnel. This is not only important because wind tunnel wall effects can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper builds on the recent CFD efforts to model the NASA Langley 14- by 22-Foot Subsonic Tunnel. Current best practices in simulating wind tunnels are evaluated. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling techniques currently used by CFD for empty-tunnel simulations are also described. Preliminary CFD studies associated with modeling the Juncture Flow model are summarized, with the intention to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions.
    Keywords: Fluid Mechanics and Thermodynamics; Aircraft Design, Testing and Performance
    Type: STO-MP-AVT-284-02 , ARC-E-DAA-TN52010 , North Atlantic Treaty Organization Science and Technology Organization (NATO STO) AVT-284 Applied Vehicle Technology (AVT) Panel Research Workshop on Advanced Wind Tunnel Boundary Simulation; Apr 16, 2018 - Apr 18, 2018; Torino; Italy|Advanced Wind Tunnel Boundary Simulation STO-MP-AVT-284
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The second AIAA CFD High-Lift Prediction Workshop was held in San Diego, California, in June 2013. The goals of the workshop continued in the tradition of the first high-lift workshop: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over the DLR-F11 model in landing configuration at two different Reynolds numbers. Twenty-six participants submitted a total of 48 data sets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to grid density and Reynolds number were analyzed, and effects of support brackets were also included. This paper analyzes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.
    Keywords: Fluid Mechanics and Thermodynamics; Aircraft Design, Testing and Performance
    Type: AIAA Paper 2014-0747 , NF1676L-17736 , AIAA Aerospace Sciences Meeting; Jan 13, 2014 - Jan 17, 2014; National Harbor, Md; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...