ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Minuscule amounts (e.g., 1 part in 10,000) of a surface-active material in a liquid can drastically affect the surface behavior of the liquid, influencing how the material flows and mixes with other liquid and solid materials. In many respects, the science of surfactants has been empirical, with trial and error dominating over the ability to predict how surfactant type and concentration influence surface behavior. A program for the modeling of surfactant behavior has been established at Yale. This program combines experimental work performed both on the ground and in space, and theoretical and numerical modeling. By levitating a drop of liquid in air, away from solid container surfaces, and by manipulating the drop with acoustic radiation forces, we have been able to establish idealized conditions for surface behavior studies. The primary experiments involve the study of the free oscillations of initially deformed drops. In STS-73, the USML-2 mission of the Space Shuttle, we performed the following measurements: 1) the oscillation of a spherical drop in its quadrupole mode; 2) the oscillation of a drop about a deformed (oblate) shape; 3) the slow static squeezing of the drop from spherical to nearly flat; and 4) the superoscillations of drops when the radiation forces maintaining the drop in a flattened state are suddenly reduced. Analytic and numerical studies have enabled us to understand the physics of these oscillations and to extract material properties such as the dynamic surface tension and the surface viscosities (shear and dilatational). The relation to ground-based studies is essential, because the knowledge and understanding gleaned from our space studies enable us to interpret ground-based data.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Second United States Microgravity Laboratory: One Year Report; Volume 1; 5.137-5.145; NASA/TM-1998-208697/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: Ultrasonic and electrostatic levitation techniques have allowed the experimental investigation of the nonlinear oscillatory dynamics of free droplets with diameter between 0.1 and 0.4 cm. The measurement of the resonance frequencies of the first three normal modes of large amplitude shape oscillations in an electric field of varying magnitude has been carried out with and without surface charges for weakly conducting liquids in air. These oscillations of nonspherical levitated drops have been driven by either modulating the ultrasonic field or by using a time-varying electric field, and the free decay from the oscillatory state has been recorded. A decrease in the resonance frequency of the driven fundamental quadrupole mode has been measured for increasing oblate deformation in the absence of an electric field. Similarly, a decrease in this frequency has also been found for increasing DC electric field magnitude. A soft nonlinearity exists in the amplitude dependence of the resonant mode frequencies for freely decaying as well as ultrasonically and electrically driven uncharged drops. This decrease in resonance frequency is accentuated by the presence of free surface charge on the drop. Subharmonic resonance excitation has been observed for drops in a time-varying electric field, and hysteresis exists for resonant modes driven to large amplitude. Mode coupling from lower-order resonances to higher-order modes has been found to be very weak, even for fairly large amplitude shape oscillations. Most of these results are in general agreement with predictions from recent analytical and numerical investigations.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Physics of Fluids (ISSN 1070-6631); Volume 8; No. 1; 43-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: Single bubble dynamics are investigated using acoustic techniques for isolation and manipulation. The goal of the investigations is to understand the dynamic origin of the various phenomena that bubbles exhibit: light emission, enhanced mass transport, chaotic and quasiperiodic oscillations, and translations. Once understood, acoustically manipulated bubbles can serve as platforms for materials effects on free surfaces, using surfactants to alter surface rheology and observing how that affects both dynamics and also mass transport. The effects of gravity on the problem will be shown to be significant. The first set of observations from 1g experimentation are presented. These observations are of the onset conditions for instability of the spherical shape of the bubble. For the size range 55-90 microns in diameter we observe instability governed by resonant mode coupling, which is significantly affected by the buoyant force and its effects.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Third Microgravity Fluid Physics Conference; 591-597; NASA-CP-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: In this paper, second order Godunov methods are reviewed. The early versions by Colella and Woodward (PPM) and van Leer (MUSCL) are described in their original form. The simplification of these by Roe, based on approximate Riemann solver, is then presented. Attention is next given to the improvement in MUSCL due to Hancock and van Leer leading to a fuller paper by Huynh. Finally, brief reference is made to TVD and ENO schemes due to Harten.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-198322 , NAS 1.26:198322 , ICASE 96-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Physical Review Letters (ISSN 0031-9007); 77; 7; 1274-1277
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...