ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Seals Code Development Workshop; 211-222; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Two equation and higher order closures for compressible turbulence fail to capture the compressible wall layers' log scaling. Accounting for the distinction between Favre and Reynolds averaged variables in the compressible moment equations indicate that turbulent transport expressions obtained using the 'variable density approximation' are in error. The error is related to the enstrophy, a Reynolds averaged variable appearing in the equation for the Favre averaged k; recognizing this fact an expression for the transport of dissipation consistent with simple mixing length arguments is obtained. Within the (limited) context of a gradient transport hypothesis a rational form for the turbulent transport of the dissipation is found. Modestly better agreement with the well established compressible Van Driest log scaling is found in k - epsilon calculation.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-198305 , NAS 1.26:198305 , ICASE-96-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: This report details calculations for the McDonnell-Douglas 30P/30N and the NHLP-2D three-element highlift configurations. Calculations were performed with the Reynolds averaged Navier-Stokes code ISAAC to study the effects of various numerical issues on high lift predictions. These issues include the effect of numerical accuracy on the advection terms of the turbulence equations, Navier-Stokes versus the thin-layer Navier-Stokes approximation, an alternative formulation of the production term, and the performance of several turbulence models. The effect of the transition location on the NHLP-2D flow solution was investigated. Two empirical transition models were used to estimate the transition location.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1998-208967 , NAS 1.26:208967
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...