ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Lentil ; Germ plasm ; Flowering ; Temperature ; Photoperiod
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A model to predict flowering time in diverse lentil genotypes grown under widely different photothermal conditions was developed in controlled environments. The present study evaluated that model with a world germ plasm collection of 369 accessions using two field environments in Syria and two in Pakistan. Photoperiod alone accounted for 69% of the variance in 1/f, the reciprocal of time (d) from sowing to flower. In contrast, temperature alone did not account for a significant proportion of variation in flowering time due to the exposure of plants to supra-optimal temperatures in the late-sown Syrian trial. With the model mean pre-flowering values of photoperiod and temperature combined additively to account for 90.3% of the variance of 1/f over accessions. The correlation of field-derived estimates of temperature sensitivity of accessions to glass-house-derived estimates was significant at P = 0.05, but the equivalent correlation for estimates of photoperiodic sensitivity was higher at P 〈 0.01. Flowering in the field was better measured as time from sowing to 50% plants in flower rather than time to first bloom or its node number. Dissemination of the lentil crop following domestication in West Asia to the lower latitudes such as Ethiopia and India has depended on selection for intrinsic earliness and reduced sensitivity to photoperiod. Movement from West Asia to the higher latitudes accompanied by spring sowing has resulted in a modest reduction in photoperiod sensitivity and an increase in temperature sensitivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Soyabean ; Glycine max ; Flowering ; Photoperiod ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thirty-nine accessions of soyabean [Glycine max (L.) Merrill] and 1 of wild annual soyabean (Glycine soja L.) were sown at two sites in Taiwan in 1989 and 1990 and on six occasions during 1990 at one site in Queensland, Australia. On two of the occasions in Australia additional treatments extended natural daylengths by 0.5 h and 2 h. The number of days from sowing for the first flower to appear on 50% of the plants in each treatment was recorded (f), and from these values the rate of progress towards flowering (1/f) was related to temperature and photoperiod. In photoperiod-insensitive accessions it was confirmed that the rate is linearly related to temperature at least up to about 29°C. In photoperiod-sensitive genotypes this is also the case in shorter daylengths but when the critical photoperiod (P c ) is exceeded flowering is delayed. This delay increases with photoperiod until a ceiling photoperiod (P ce ) is reached. Between P c and P ce , 1/f is linearly related to both temperature (positive) and photoperiod (negative), but in photoperiods longer than P ce there is no further response to either factor. The resulting triple-intersecting-plane response surface can be defined by six genetically-determined coefficients, the values of which are environment-independent but predict time to flower in any environment, and thus quantify the genotype×environment interaction. By this means the field data were used to characterise the photothermal responses of all 40 accessions. The outcome of this characterisation in conjunction with an analysis of the world-wide range of photothermal environments in which soyabean crops are grown lead to the following conclusions: (1) photoperiod-insensitivity is essential in soyabean crops in temperate latitudes, but such genotypes flower too rapidly for satisfactory yields in the tropics; (2) photoperiod-sensitivity appears to be essential to delay flowering sufficiently to allow adequate biomass accumulation in the warm climates of the tropics; (3) contrary to a widely held view, some degree of photoperiod-sensitivity is also needed in the tropics if crop-duration homeostasis is required where there is variation in sowing dates (this is achieved through a photoperiod-controlled delay in flowering which counteracts the seasonal increase in temperature that is correlated with increase in daylength); and (4) a greater degree of photoperiod-sensitivity is necessary to provide maturity-date homeostasis for variable sowing dates – a valuable attribute in regions of uncertain rainfall. Since the triple-intersecting-plane response model used here also applies to other species, the use of field data to characterise the photothermal responses of other crops is discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Sorghum bicolor ; Flowering ; Temperature ; Photoperiod ; Adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop grown in a wide range of tropical and temperate environments. This study was conducted to characterise the photothermal flowering responses of sorghum genotypes and to examine relationships between photothermal characteristics and environment of origin in order to better understand the phenological basis of adaptation to environment in sorghum. Twenty-four germplasm accessions and one hybrid from 24 major sorghum-growing areas were grown in a wide range of environments varying in temperature and photoperiod in India, Kenya and Mali between 1992 and 1995. Times from sowing to flowering (f) were recorded, and the responsiveness of 1/f to temperature and photoperiod was quantified using photothermal models. Times from sowing to flowering were accurately predicted in a wide range of environments using a multiplicative rate photothermal model. Significant variation in the minimum time to flower (Fm) and photoperiod sensitivity (critical photoperiod, Pc, and photoperiod-sensitivity slope, Ps) was observed among the genotypes; in contrast there was little variation in base temperature (Tb). Adaptation of sorghum to the diverse environments in which it is grown was largely determined by photoperiod sensitivity and minimum time to flower; photoperiod sensitivity determines broad adaptation to latitude (daylength), while variation in the minimum time to flower determines specific adaptation within smaller ranges of latitude, e.g. within the humid and sub-humid tropics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Lentil ; Germ plasm ; Flowering ; Temperature ; Photoperiod
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The times from sowing to first flowering (f) of 231 accessions of lentil (Lens culinaris Medik.), comprising germ plasm from eight countries and breeding lines from ICARDA in Syria, were recorded in four glasshouse environments; two photoperiods (16 and 13 h/day) combined with warmer (24°/13°C) and cooler (18°/9°C) day/night temperatures. The linear model 1/f=a+bT + cP (where T is mean diurnal temperature and P is photoperiod) provided an average fit over the 231 accessions of r 2=0.852. Since there is no interaction term in this linear model, the flowering responses of an accession to temperature and photoperiod are independent. The values of the constants b and c indicate relative responsiveness of rate of progress towards flowering (1/f) to temperature and photoperiod, respectively. Comparison among the 231 accessions showed a weak, but significant, negative correlation between the values of b and c (r=-0.291, P〈0.01). Since the proportion of the variance of b not attributed to its linear regression on c was 〉0.91, we conclude that these phenological responses are under separate control and that there is considerable scope for selection of any combination of sensitivities to temperature and photoperiod in lentil. Just as a large proportion of the variation among accessions in mean time to first flowering was attributed to country of origin, so also was variability in the values of the constants a, b, and c. In particular, sensitivity to photoperiod (i.e., the value of constant c) was dependent upon latitude of origin. Breeding lines from ICARDA were equally variable in a, b, and c as were germ plasm accessions from elsewhere, while the mean values were similar to those of accessions from neighboring Jordan. A single accession of wild lentil (L. culinaris subsp. orientalis) from Turkey showed flowering responses to T and P similar to the mean value of accessions of cultivated lentil from that country. Results from diverse environments for the Argentinian cv Precoz show that the use of this linear model facilitates predictions of time to flowering in any environment (within wide limits) of known mean temperature and photoperiod. The model, then, minimizes the need for multisite evaluations of phenology, since predictions of pre-flowering duration in any environment, and characterization of flowering responses to photoperiod and temperature, can now be achieved by screening germ plasm in a few, carefully selected locations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Soyabean ; Glycine max ; Flowering ; Photoperiod ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thirty-nine accessions of soyabean [Glycine max (L.) Merrill] and 1 of wild annual soyabean (Glycine soja L.) were sown at two sites in Taiwan in 1989 and 1990 and on six occasions during 1990 at one site in Queensland, Australia. On two of the occasions in Australia additional treatments extended natural daylengths by 0.5 h and 2 h. The number of days from sowing for the first flower to appear on 50% of the plants in each treatment was recorded (f), and from these values the rate of progress towards flowering (1/f) was related to temperature and photoperiod. In photoperiod-insensitive accessions it was confirmed that the rate is linearly related to temperature at least up to about 29°C. In photoperiod-sensitive genotypes this is also the case in shorter daylengths but when the critical photoperiod (P c) is exceeded flowering is delayed. This delay increases with photoperiod until a ceiling photoperiod (P ce) is reached. Between P c and P ce, 1/f is linearly related to both temperature (positive) and photoperiod (negative), but in photoperiods longer than P ce there is no further response to either factor. The resulting triple-intersecting-plane response surface can be defined by six genetically-determined coefficients, the values of which are environment-independent but predict time to flower in any environment, and thus quantify the genotype x environment interaction. By this means the field data were used to characterise the photothermal responses of all 40 accessions. The outcome of this characterisation in conjunction with an analysis of the world-wide range of photothermal environments in which soyabean crops are grown lead to the following conclusions: (1) photoperiod-insensitivity is essential in soyabean crops in temperate latitudes, but such genotypes flower too rapidly for satisfactory yields in the tropics; (2) photoperiod-sensitivity appears to be essential to delay flowering sufficiently to allow adequate biomass accumulation in the warm climates of the tropics; (3) contrary to a widely held view, some degree of photoperiod-sensitivity is also needed in the tropics if crop-duration homeostasis is required where there is variation in sowing dates (this is achieved through a photoperiod-controlled delay in flowering which counteracts the seasonal increase in temperature that is correlated with increase in day-length); and (4) a greater degree of photoperiod-sensitivity is necessary to provide maturity-date homeostasis for variable sowing dates — a valuable attribute in regions of uncertain rainfall. Since the triple-intersecting-plane response model used here also applies to other species, the use of field data to characterise the photothermal responses of other crops is discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...