ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Florida Straits  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1205, doi:10.1029/2010PA002032.
    Description: The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.
    Description: We thank the National Science Foundation (grants OCE‐0648258 and OCE‐0096472) and the Comer Science and Education Foundation for supporting this research. MWS was supported by a NOAA Global Change Postdoctoral Fellowship.
    Keywords: Florida Straits ; Younger Dryas ; Florida Current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-19
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 37, (2022): e2021PA004379, https://doi.org/10.1029/2021pa004379.
    Description: Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.
    Description: This work was funded by the NSF Graduate Research Fellowship DGE-1148903 (SV) and NSF grant OCE-1459563 and OCE-1851900 (JLS).
    Keywords: AMOC ; seawater cadmium ; Florida Straits ; Holocene ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...