ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Florida Current
  • Atlantic Circulation
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 30 (2015): 353–368, doi:10.1002/2014PA002667.
    Description: Approximately synchronous with the onset of Heinrich Stadial 1 (HS1), δ13C decreased throughout most of the upper (~1000–2500 m) Atlantic, and at some deeper North Atlantic sites. This early deglacial δ13C decrease has been alternatively attributed to a reduced fraction of high-δ13C North Atlantic Deep Water (NADW) or to a decrease in the NADW δ13C source value. Here we present new benthic δ18O and δ13C records from three relatively shallow (~1450–1650 m) subpolar Northeast Atlantic cores. With published data from other cores, these data form a depth transect (~1200–3900 m) in the subpolar Northeast Atlantic. We compare Last Glacial Maximum (LGM) and HS1 data from this transect with data from a depth transect of cores from the Brazil Margin. The largest LGM-to-HS1 decreases in both benthic δ13C and δ18O occurred in upper waters containing the highest NADW fraction during the LGM. We show that the δ13C decrease can be explained entirely by a lower NADW δ13C source value, entirely by a decrease in the proportion of NADW relative to Southern Ocean Water, or by a combination of these mechanisms. However, building on insights from model simulations, we hypothesize that reduced ventilation due to a weakened but still active Atlantic Meridional Overturning Circulation also contributed to the low δ13C values in the upper North Atlantic. We suggest that the benthic δ18O gradients above ~2300 m at both core transects indicate the depth to which heat and North Atlantic deglacial freshwater had mixed into the subsurface ocean by early HS1.
    Description: The work was supported by NSF grants OCE13-35191, OCE07-50880, and OCE05-84911 to the Woods Hole Oceanographic Institution.
    Keywords: Heinrich Stadial 1 ; Deglacial d13C minimum ; Atlantic Circulation ; Benthic d18O ; Benthic d13C
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 24 (2009): PA3209, doi:10.1029/2008PA001717.
    Description: The density structure across the Florida Straits is reconstructed for the last 8000 years from oxygen isotope measurements on foraminifera in sediment cores. The oxygen isotope measurements suggest that the density contrast across the Florida Current increased over this time period. The magnitude of this change corresponds to an increase in the geostrophic transport referenced to 800 m water depth of 4 sverdrups (Sv) over the last 8000 years. The spatial and seasonal distribution of incoming solar radiation due to changes in the Earth's orbit has caused systematic changes in the atmospheric circulation, including a southward migration of the Intertropical Convergence Zone over the last 8000 years. These changes in atmospheric circulation and the associated wind-driven currents of the upper ocean could readily account for a 4 Sv increase in the strength of the Florida Current. We see no evidence in our data for dramatic changes in the strength of the Atlantic Meridional Overturning Circulation over this time period.
    Description: This work was supported by NSF grants OCE-9984989/OCE-0428803 and OCE-0096472 to J.L.-S. and NSF grants OCE-0096469 to W.B.C.
    Keywords: Florida Current ; Holocene ; Foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1205, doi:10.1029/2010PA002032.
    Description: The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.
    Description: We thank the National Science Foundation (grants OCE‐0648258 and OCE‐0096472) and the Comer Science and Education Foundation for supporting this research. MWS was supported by a NOAA Global Change Postdoctoral Fellowship.
    Keywords: Florida Straits ; Younger Dryas ; Florida Current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...