ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Flood frequency  (1)
  • American Geophysical Union  (1)
  • Oxford University Press
  • Wiley
  • Paleontological Society
  • American Meteorological Society (AMS)
Collection
Publisher
  • American Geophysical Union  (1)
  • Oxford University Press
  • Wiley
  • Paleontological Society
  • American Meteorological Society (AMS)
Years
  • 1
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 196-211, doi:10.1029/2018JC014313.
    Description: Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the lower estuary have been slight (〈10%). Channel deepening has reduced the effective drag in the upper tidal river, shifting the system from hyposynchronous (tide decaying landward) to hypersynchronous (tide amplifying). Similarly, modeling shows that coastal storm effects propagate farther landward, with a 20% increase in amplitude for a major event. In contrast, the decrease in friction with channel deepening has lowered the tidally averaged water level during discharge events, more than compensating for increased surge amplitude. Combined with river regulation that reduced peak discharges, the overall risk of extreme water levels in the upper tidal river decreased after channel construction, reducing the water level for the 10‐year recurrence interval event by almost 3 m. Mean water level decreased sharply with channel modifications around 1930, and subsequent decadal variability has depended both on river discharge and sea level rise. Channel construction has only slightly altered tidal and storm surge amplitudes in the lower estuary.
    Description: Funding for D. K. R., W. R. G., and C. K. S. was provided by NSF Coastal SEES awards OCE-1325136 and OCE-1325102. Funding for S.T. and H. Z. was provided by the U.S. Army Corps of Engineers (award W1927 N-14-2-0015), and NSF (Career Award 1455350). Data supporting this study are posted to Zenodo (https://doi.org/10.5281/zenodo.1298636).
    Description: 2019-06-11
    Keywords: Barotropic tides ; Flood frequency ; Storm surge ; Dredging ; Estuary ; Tidal river
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...