ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • File content; File format; File name; File size; Uniform resource locator/link to file  (1)
  • Mediterranean Sea  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lindeque, Ansa; Gohl, Karsten; Wobbe, Florian; Uenzelmann-Neben, Gabriele (2016): Preglacial to glacial sediment thickness grids for the Southern Pacific Margin of West Antarctica. Geochemistry, Geophysics, Geosystems, 17(10), 4276-4285, https://doi.org/10.1002/2016GC006401
    Publication Date: 2023-01-13
    Description: Circum-Antarctic sediment thickness grids provide constraints for basin evolution and paleotopographic reconstructions, which are important for paleo-ice sheet formation histories. By compiling old and new seismic data, we identify sequences representing pre-glacial, transitional and full glacial deposition processes along the Pacific margin of West Antarctica. The pre-glacial sediment grid depicts 1.3 to 4.0 km thick depocenters, relatively evenly distributed along the margin. The depocenters change markedly in the transitional phase at, or after, the Eocene/Oligocene boundary, when the first major ice sheets reached the shelf. Full glacial sequences, starting in the middle Miocene, indicate new depocenter formation North of the Amundsen Sea Embayment and localized eastward shifts in the Bellingshausen Sea and Antarctic Peninsula basins. Using present-day drainage paths and source areas on the continent, our calculations indicate an estimated observed total sedimentary volume of ~10 x 10**6 km**3 was eroded from West Antarctica since the separation of New Zealand in the Late Cretaceous. Of this 4.9 x 10**6 km**3 predates the onset of glaciation and need to be considered for a paleotopography reconstruction of 34 Ma. Whereas 5.1 x 10**6 km**3 postdate the onset of glaciation, of which 2.5 x 10**6 km**3 were deposited in post mid-Miocene full glacial conditions.
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: Molecular studies of marine plankton have shown that ecological and/or environmental barriers play an important role in separating populations. Calanoid copepods are central in marine ecosystems, and dramatic biogeographical shifts in copepod assemblages associated with recent climate warming have been reported. We examined spatial population structuring in European waters of the Atlantic Ocean and Mediterranean Sea of Calanus helgolandicus and its sister species, C. euxi nus, from the Black Sea based on genetic and morphometric characters. The aims were to identify barriers to dispersal, relate these to hydrographic characteristics and infer historical patterns of distribution and demography. We analysed a 408 bp fragment of the mitochondrial 16S gene (316 individuals), prosome to urosome length relationships (212 individuals) and sea surface temperatures obtained from 19 European sites. Estimates of genetic differentiation between samples and hierarchical analyses of molecular variance indicated strong spatial population structuring between, as well as within, basins. We identified 7 phylogeographic groups: Fjords, Oceanic inflow, NE Atlantic/ Tyrrhenian, Adriatic, Mljet Island, Aegean, and Black Sea, which explained 39.7% of the total genetic variation. Based on genetic data, C. euxinus is considered to be a differentiated population within the C. helgolandicus distribution range because the most important genetic barrier separates western and eastern Mediterranean populations. Morphometric barriers largely reflect sea surface temperature barriers and are not congruent with the main genetic barriers. Contrary to recent findings for C. finmarchicus, we conclude that C. helgolandicus/C. euxinus populations are not connected by high levels of dispersal and have been vulnerable to past climatic changes.
    Keywords: Calanus helgolandicus ; Calanus euxinus ; 16S rDNA ; Mediterranean Sea ; North Atlantic Ocean ; Black Sea
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...