ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Key words Phospholipid fatty acids ; Substrate-induced respiration ; Fungi ; Bacteria ; Sheep-grazing ; Fertiliser ; Lime ; Microbial biomass ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this study we examined the effect on soil fungal:bacterial biomass ratios of withholding fertiliser, lime, and sheep-grazing from reseeded upland grassland. The cessation of fertiliser applications on limed and grazed grassland resulted in a reduction in soil pH from 5.4 to 5.1. The cessation of fertiliser applications and liming on grazed grassland resulted in a fall in pH from 5.4 to 4.7, whereas withholding fertiliser and lime and the removal of grazing resulted in a further reduction to pH 4.5. Substrate-induced respiration was reduced in the unfertilised grazed (21%; P〈0.01) and unfertilised ungrazed (36%; P〈0.001) treatments. Bacterial substrate-induced respiration and bacterial fatty acids were unaffected by the treatments. The relative abundance of the fungal fatty acid 18:2ω6 increased by 39 and 72% (P〈0.05) in the limed grazed and unfertilised grazed treatments, respectively. Fungal substrate-induced respiration increased in the limed grazed (18%) and unfertilised grazed (65%; P〈0.05) treatments. The ratio of 18:2ω6: bacterial fatty acids was correlated with the ratio of fungal:bacterial substrate-induced respiration (r=0.69; P〈0.001).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...