ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-01-05
    Description: The presence of galactose alpha-1,3-galactose residues on the surface of pig cells is a major obstacle to successful xenotransplantation. Here, we report the production of four live pigs in which one allele of the alpha-1,3-galactosyltransferase locus has been knocked out. These pigs were produced by nuclear transfer technology; clonal fetal fibroblast cell lines were used as nuclear donors for embryos reconstructed with enucleated pig oocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lai, Liangxue -- Kolber-Simonds, Donna -- Park, Kwang-Wook -- Cheong, Hee-Tae -- Greenstein, Julia L -- Im, Gi-Sun -- Samuel, Melissa -- Bonk, Aaron -- Rieke, August -- Day, Billy N -- Murphy, Clifton N -- Carter, David B -- Hawley, Robert J -- Prather, Randall S -- R44 RR15198/RR/NCRR NIH HHS/ -- T32 RR07004/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1089-92. Epub 2002 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Science, University of Missouri, Columbia, MO 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778012" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Animals, Genetically Modified ; Cell Line ; *Cloning, Organism ; Embryo Transfer ; Female ; Fetus ; Fibroblasts ; Galactosyltransferases/*genetics ; *Gene Targeting ; Genetic Vectors ; Male ; Mutagenesis, Insertional ; Nuclear Transfer Techniques ; Pregnancy ; Recombination, Genetic ; Swine ; Swine, Miniature/embryology/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-02-28
    Description: Although in Saccharomyces cerevisiae the initiation of meiotic recombination, as indicated by double-strand break formation, appears to be functionally linked to the initiation of synapsis, meiotic chromosome synapsis in Drosophila females occurs in the absence of meiotic exchange. Electron microscopy of oocytes from females homozygous for either of two meiotic mutants (mei-W68 and mei-P22), which eliminate both meiotic crossing over and gene conversion, revealed normal synaptonemal complex formation. Thus, synapsis in Drosophila is independent of meiotic recombination, consistent with a model in which synapsis is required for the initiation of meiotic recombination. Furthermore, the basic processes of early meiosis may have different functional or temporal relations, or both, in yeast and Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKim, K S -- Green-Marroquin, B L -- Sekelsky, J J -- Chin, G -- Steinberg, C -- Khodosh, R -- Hawley, R S -- New York, N.Y. -- Science. 1998 Feb 6;279(5352):876-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9452390" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/genetics/*physiology/ultrastructure ; Crossing Over, Genetic ; Drosophila melanogaster/genetics/*physiology ; Female ; Gene Conversion ; *Meiosis ; Mutation ; Oocytes/physiology ; *Recombination, Genetic ; Saccharomyces cerevisiae/genetics/physiology ; Sister Chromatid Exchange ; Synaptonemal Complex/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-21
    Description: Cutaneous malignant melanoma is a highly aggressive and frequently chemoresistant cancer, the incidence of which continues to rise. Epidemiological studies show that the major aetiological melanoma risk factor is ultraviolet (UV) solar radiation, with the highest risk associated with intermittent burning doses, especially during childhood. We have experimentally validated these epidemiological findings using the hepatocyte growth factor/scatter factor transgenic mouse model, which develops lesions in stages highly reminiscent of human melanoma with respect to biological, genetic and aetiological criteria, but only when irradiated as neonatal pups with UVB, not UVA. However, the mechanisms underlying UVB-initiated, neonatal-specific melanomagenesis remain largely unknown. Here we introduce a mouse model permitting fluorescence-aided melanocyte imaging and isolation following in vivo UV irradiation. We use expression profiling to show that activated neonatal skin melanocytes isolated following a melanomagenic UVB dose bear a distinct, persistent interferon response signature, including genes associated with immunoevasion. UVB-induced melanocyte activation, characterized by aberrant growth and migration, was abolished by antibody-mediated systemic blockade of interferon-gamma (IFN-gamma), but not type-I interferons. IFN-gamma was produced by macrophages recruited to neonatal skin by UVB-induced ligands to the chemokine receptor Ccr2. Admixed recruited skin macrophages enhanced transplanted melanoma growth by inhibiting apoptosis; notably, IFN-gamma blockade abolished macrophage-enhanced melanoma growth and survival. IFN-gamma-producing macrophages were also identified in 70% of human melanomas examined. Our data reveal an unanticipated role for IFN-gamma in promoting melanocytic cell survival/immunoevasion, identifying a novel candidate therapeutic target for a subset of melanoma patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaidi, M Raza -- Davis, Sean -- Noonan, Frances P -- Graff-Cherry, Cari -- Hawley, Teresa S -- Walker, Robert L -- Feigenbaum, Lionel -- Fuchs, Elaine -- Lyakh, Lyudmila -- Young, Howard A -- Hornyak, Thomas J -- Arnheiter, Heinz -- Trinchieri, Giorgio -- Meltzer, Paul S -- De Fabo, Edward C -- Merlino, Glenn -- CA53765/CA/NCI NIH HHS/ -- CA92258/CA/NCI NIH HHS/ -- R01 CA053765-10S1/CA/NCI NIH HHS/ -- R01 CA092258-05/CA/NCI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2011 Jan 27;469(7331):548-53. doi: 10.1038/nature09666. Epub 2011 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21248750" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disease Models, Animal ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Developmental/radiation effects ; Humans ; Interferon-gamma/*metabolism ; Macrophages/metabolism/radiation effects ; Male ; Melanocytes/*metabolism/radiation effects ; Melanoma/*physiopathology ; Mice ; *Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-06-30
    Description: In normal Drosophila melanogaster oocytes, meiosis arrests at metaphase I and resumes after oocyte passage through the oviduct. Thus, metaphase arrest defines a control point in the meiotic cell cycle. Metaphase arrest only occurs in oocytes that have undergone at least one meiotic exchange. Here it is shown that crossovers between homologs attached to the same centromere do not induce metaphase arrest. Hence, exchanges induce metaphase arrest only when they physically conjoin two separate kinetochores. Thus, the signal that mediates metaphase arrest is not the exchange event per se but the resulting tension on homologous kinetochores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jang, J K -- Messina, L -- Erdman, M B -- Arbel, T -- Hawley, R S -- N01-HD-2-3144/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 30;268(5219):1917-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of California at Davis 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7604267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crossing Over, Genetic ; Drosophila melanogaster ; Female ; Kinetochores/*physiology ; *Meiosis ; *Metaphase ; Oocytes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...