ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Visual geosciences 4 (1999), S. 1-14 
    ISSN: 1610-2924
    Keywords: Fault nucleation ; Visualization ; Thermal coupling ; Experimental and numerical modeling ; Plasticity theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Continental breakup, or compressive lithosphere scale faulting, requires a physical mechanism for wholesale faulting of the lithosphere. We compared numerical and experimental models for the nucleation of quasi-adiabatic shear bands in polyvinylchloride (PVC) with those in an idealized viscoelastoplastic mantle with olivine rheology. In both materials fault nucleation is caused by elastic stress concentration on pre-existing imperfections, with localized yielding confined to its vicinity. Faulting occurs rapidly after the initial elastic energy in the system is charged sufficiently to cause wholesale yielding. Propagation of the fault, monitored by looking at the dissipation of plastic energy, reveals migration of a sharp, thermal-mechanical “crack”- like instability, which appears in the temperature field as a slightly diffused signal. The initial temperature rise in the crack is subtle but increases suddenly when the plate is severed. This autocatalytic behavior has also been described in ductile polymers, which can be used as mechanical analogues. We suggest that elastoplastic coupling in quasi-adiabatic shear banding is a key for fast (〈 1 Ma) nucleation of shear zones. These nonlinear phenomena will be illustrated for both experimental and numerical results by nine movies
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...