ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-08
    Description: Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knipscheer, Puck -- Raschle, Markus -- Smogorzewska, Agata -- Enoiu, Milica -- Ho, The Vinh -- Scharer, Orlando D -- Elledge, Stephen J -- Walter, Johannes C -- GM62267/GM/NIGMS NIH HHS/ -- R01 GM062267/GM/NIGMS NIH HHS/ -- R01 GM062267-09/GM/NIGMS NIH HHS/ -- R37 GM044664/GM/NIGMS NIH HHS/ -- R37 GM044664-23/GM/NIGMS NIH HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1698-701. doi: 10.1126/science.1182372. Epub 2009 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965384" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell-Free System ; Chromatin/metabolism ; DNA/biosynthesis ; DNA Damage ; *DNA Repair ; *DNA Replication ; Fanconi Anemia/genetics/metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Molecular Sequence Data ; Recombinant Proteins/metabolism ; S Phase ; Signal Transduction ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Xenopus Proteins/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-18
    Description: The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700363/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700363/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kottemann, Molly C -- Smogorzewska, Agata -- 8 UL1 TR000043/TR/NCATS NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- England -- Nature. 2013 Jan 17;493(7432):356-63. doi: 10.1038/nature11863.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23325218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Transformation, Neoplastic ; DNA/chemistry/genetics/*metabolism ; *DNA Repair ; Ethanol/metabolism ; Fanconi Anemia/*genetics/*metabolism/pathology ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Humans ; Stem Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...