ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FRAP  (1)
  • isolated mitotic spindles  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 282-290 
    ISSN: 0886-1544
    Keywords: mitosis ; microtubules ; colchicine ; isolated mitotic spindles ; birefringence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have analyzed the effect of colchicine and tubulin dimer-colchicine complex (T-C) on microtubule assembly in mitotic spindles. Cold- and calcium-labile mitotic spindles were isolated from embryos of the sea urchin Lytechinus variegatus employing EGTA/glycerol stabilization buffers. Polarization microscopy and measurements of spindle birefringent retardation (BR) were used to record the kinetics of microtubule assembly-disassembly in single spindles. When isolated spindles were perfused out of glycerol stabilizing buffer into a standard in vitro microtubule reassembly buffer (0.1 M Pipes, pH 6.8, 1 mM EGTA, 0.5 mM MgCl2, and 0.5 mM GTP) lacking glycerol, spindle BR decreased with a halftime of 120 s. Colchicine at 1 mM in this buffer had no effect on the rate of spindle microtubule disassembly. Inclusion of 20 μM tubulin or microtubule protein, purified from porcine brain, in this buffer resulted in an augmentation of spindle BR. Interestingly, in the presence of 20 μM T-C, spindle BR did not increase, but was reversibly stabilized; subsequent perfusion with reassembly buffer without T-C resulted in depolymerization. This behavior is striking in contrast to the rapid depolymerization of spindle microtubules induced by colchicine and T-C in vivo. These results support the current view that colchicine does not directly promote microlubule depolymerization. Rather, it is T-C complex that alters microtubule assembly, by reversibly binding to microtubules and inhibiting elongation.In vivo, colchicine can induce depolymerization of nonkinetochore spindle microtubules within 20 s. In vitro, colchicine blocks further microtubule assembly, but does not induce rapid disassembly. The rate of tubulin dissociation from spindle microtubules in vitro in reassembly buffer without soluble tubulin is about 20 times slower than the rate of dissociation in vivo when assembly is blocked abruptly by T-C. The rate of tubulin dissociation from the spindle microtubules may determine their response to T-C, since the tubulin dissociation rate in vivo is about 12 times faster than the rate measured here for spindle microtubules in standard microtubule reassembly buffer at physiological temperature.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 11 (1988), S. 97-105 
    ISSN: 0886-1544
    Keywords: spindle microtubules ; mitosis ; FRAP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Recent experiments have shown that spindle microtubules are exceedingly dynamic. Measurements of fluorescence recovery after photobleaching (FRAP), in cells previously microinjected with fluorescent tubulin, provide quantitative information concerning the rate of turnover, or exchange, of tubulin subunits with the population of microtubules in living cells at steady state. In an effort to elucidate the pathways and factors that regulate tubulin exchange with microtubules in living cells, we have investigated the energy requirements for tubulin turnover as measured by FRAP. Spindle morphology was not detectably altered in cells incubated with 5 mM sodium azide and 1 mM 2-deoxyglucose (Az/DOG) for 5 minutes, as assayed by polarized light microscopy and antitubulin immunofluorescence. In FRAP experiments on these ATP-depleted cells, the average rate of recovery and the average percent of bleached fluorescence recovered were reduced to 37% and 30% of controls, respectively. When the inhibitors were removed, cells continued through mitosis, and rapid FRAP was restored. In the presence of azide and glucose, the rate of recovery and percent of fluorescence recovered were only slightly reduced, demonstrating that energy production via glycolysis can support microtubule turnover. Longer incubations with Az/DOG altered the microtubule organization in mitotic cells: astral microtubules lengthened and spindle fibers shortened. Furthermore, both astral and spindle microtubules became resistant to nocodazole-induced disassembly under these conditions. Together these observations indicate that microtubule dynamics require ATP and suggest a relationship between microtubule organization and turnover.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...