ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-25
    Description: This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ; : Polymides and othe
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-10
    Description: The present volume on parallel CFD discusses implementations on parallel machines, numerical algorithms for parallel CFD, and performance evaluation and computer science issues. Attention is given to a parallel algorithm for compressible flows through rotor-stator combinations, a massively parallel Euler solver for unstructured grids, a fast scheme to analyze 3D disk airflow on a parallel computer, and a block implicit multigrid solution of the Euler equations. Topics addressed include a 3D ADI algorithm on distributed memory multiprocessors, clustered element-by-element computations for fluid flow, hypercube FFT and the Fourier pseudospectral method, and an investigation of parallel iterative algorithms for CFD. Also discussed are fluid dynamics using interface methods on parallel processors, sorting for particle flow simulation on the connection machine, a large grain mapping method, and efforts toward a Teraflops capability for CFD.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ; 356 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...