ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (36)
  • 2005-2009
  • 1990-1994  (25)
  • 1985-1989  (11)
  • 1945-1949
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-06-13
    Description: A discussion is presented on the coupling of computational analysis and experiment. It is believed that this coupling is critical in developing new aerodynamic insights. Additionally, new methods for analyzing and interpreting data are discussed. These methods need to be developed in small-scale research studies and then applied to large-scale technology programs. The specific objectives of this program are threefold: (1) provide definitive data sets for the assessment of numerical simulations to the Navier-Stokes equations; (2) incorporate advanced instrumentation to measure the spatial and temporal structure of fluid flows; and (3) develop true parallelism between computational and experimental research using the 'scientific workstation' concept. The discussion is presented in viewgraph form.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA CFD Validation Workshop; p 78-97
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The transition of an incompressible three-dimensional boundary layer with strong cross-flow is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two lower-branch Tollmien-Schlichting waves which mutually interact nonlinearly to induce a longitudinal vortex flow. The vortex motion in turn gives rise to significant wave modulation via wall-shear forcing. The characteristic Reynolds number is large and, as a consequence, the waves' and the vortex motion are governed primarily by triple deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Following analysis and computation over a wide range of parameters, three distinct responses are found to emerge in the nonlinear behavior of the flow solution downstream: an algebraic finite-distance singularity, far-downstream saturation or far-downstream wave decay leaving pure vortex flow. These depend on the input conditions, the wave angles and the size of the cross flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Royal Society (London) Proceedings, Series A - Mathematical and Physical Sciences (ISSN 0962-8444); 446; 1927; p. 319-340
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The linear-stability theory of plane stagnation-point flow against an infinite flat plate is re-examined. Disturbances are generalized from those of Goertler type to include other types of variations along the plate. It is shown that Hiemenz flow is linearly stable and that the Goertler-type modes are those that decay slowest. This work then rationalizes the use of such self-similar disturbances on Hiemenz flow and shows how questions of disturbance structure can be approached on other self-similar flows.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Quarterly Journal of Mechanics and Applied Mathematics (ISSN 0033-5614); 44; 135-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The morphological stability of a rotating and solidifying disk is investigated under the assumption that delta, the thickness of the viscous boundary layer, is much larger than delta(c), the thickness of the solute boundary layer. It is found that axisymmetric disturbances with wavelengths comparable to delta respond to nonparallel flow effects and have stability characteristics quite different from disturbances in a parallel flow. These long waves are unstable because of the nonparallel flow and would decay without it. This analysis thus identifies a new mechanism of morphological change induced by flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Crystal Growth (ISSN 0022-0248); 87; 4, Ma; 385-396
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Long-wave instabilities in a directionally-solidified binary mixture may occur in several limits. Sivashinsky (1983) identified a small-segregation-coefficient limit and obtained a weakly nonlinear evolution equation governing subcritical two-dimensional bifurcation. Brattkus and Davis (1988) identified a near-absolute-stability limit and obtained a strongly nonlinear evolution equation governing supercritical two-dimensional bifurcation. The present investigation identifies a third strongly nonlinear evolution equation, arising in the small-segregation-coefficient, large-surface-energy limit. This equation links both of the former and describes the change from the sub- to super-critical bifurcations. This study sets the previous long-wave analyses into a logical framework.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: SIAM Journal on Applied Mathematics (ISSN 0036-1399); 50; 420-436
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A binary liquid undergoes unidirectional solidification. The one-dimensional steady state is susceptible to morphological instability that causes the solid/liquid interface to change from a planar state to a cellular pattern. This paper examines the effects on this transition of volume-change convection, buoyancy-driven convection or forced flows. It emphasizes how flows alter stability limits, create scale and pattern changes in morphology, and create, through coupling, new instabilities. Emphasis is placed on the physical mechanisms of the interactions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 212; 241-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: A binary liquid that undergoes directional solidification is susceptible to morphological and solutal-convective instabilities that cause the solid/liquid interface to change from a planar to a cellular state. This paper gives derivations for those long-wave evolution equations that describe the weak couplings between convection and interface morphology and gives some analytical results obtainable from these.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: IMA Journal of Applied Mathematics (ISSN 0272-4960); 45; 3, 19; 267-285
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: Plane stagnation-point flow is modulated in the free stream so that the velocity components are proportional to K(H) + K cos omega t. Similarity solutions of the Navier-Stokes equations are examined using high-frequency asymptotics for K and K(H) of unit order. Special attention is focused on the steady streaming generated in this flow with strongly non-parallel streamlines.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 198; 543-555
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: An incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duct was studied experimentally. The cross-sectional geometry all along the duct was defined using the equation of a superellipse. The three mean velocity components and the six Reynolds stress components were measured at two axial stations downstream from the transition. It is shown that a secondary flow vortex pair which develops along the duct sidewalls significantly distorts the mean and turbulence fields. At the duct exit, the flow is not in local equilibrium, but recovers to local equilibrium conditions in the rectangular extension duct. Analysis demonstrates that conventional wall functions are not applicable at all streamwise locations in the duct.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 90-1505
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The loss of the Space Shuttle Challenger was caused by the failure of the aft joint O-ring seals in its right solid rocket booster. It has been suggested by several sources that wind conditions through a reduction in temperature of the right solid rocket booster caused by the wind blowing across the cold external tank, played a role in the O-ring failure. To check the plausibility of the wind theory, an experiment was carried out in a water towing tank to visualize the flow past a two-dimensional model representing a cross section of the Space Shuttle launch configuration. The periodic formation of vortices was found to characterize the wake generated by the model. It is suggested that this organized motion in the flow is the dominant mechanism that accomplishes heat transfer from the external tank to the right solid rocket booster. Flow visualization results consisting of photographs that show instantaneous streamline patterns of the flow are presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-89440 , A-87151 , NAS 1.15:89440
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...