ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 99 (1999), S. 391-397 
    ISSN: 1432-2242
    Keywords: Key words Centromeric specific repetitive sequence ; FISH ; Petunia hybrida ; Self-incompatibility ; S-RNase gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  S-RNase has been identified to be an S-allele-specific stylar determinant contributing to the self-incompatibility response in Solanaceae. In order to examine the physical location of the S-RNase gene, multi-color fluorescence in situ hybridization (FISH) using the S B1 -RNase cDNA probe and ribosomal RNA gene (rDNA) probe was performed on an S B1 S B2 heterozygote of Petunia hybrida. The S B1 -RNase gene was detected as a doublet signal close to the centromere of chromosome III. Next, we performed FISH using a large genome probe prepared from a λSB1–311 clone (20 kb) which contains the S B1 -RNase gene and its 3´ flanking region. This probe hybridized to the centromeric regions of all P. hybrida chromosomes. Sequence analysis of the λSB1–311 clone revealed the presence of a repetitive sequence consisting of a novel 666 bp unit sequence. A subclone (pBS-SB1B5) containing this unit sequence also hybridized to all of the centromeric regions, confirming that this unit is the centromeric specific repetitive sequence. These data suggested that the S B1 -RNase gene is located very close to (within a distance of 12 kb from) the centromeric-specific repetitive sequence. Likewise, the pBS-SB1B5 probe hybridized to the centromeric regions of all chromosomes in P. littoralis, another Petunia species. However, the probe did not hybridize to the centromere of the chromosomes from other species in Solanaceae. These results suggested that this centromeric repetitive sequence might be a genus-specific one.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Brassica rapa ; Brassica nigra ; Brassica oleracea ; Quantitative chromosome map ; Idiogram ; FISH ; 45s rDNA ; Systematic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Chromosomes of the three diploid Brassica species, B. rapa (AA), B. nigra (BB) and B. oleracea (CC), were identified based on their morphological characteristics, especially on the condensation pattern appearing at the somatic pro-metaphase stage. The morphological features of the pro-metaphase chromosomes of the three Brassica spp. were quantified by imaging methods using chromosome image analyzing system II (CHIAS 2). As a result, quantitative chromosome maps or idiograms of the three diploid Brassica spp. were developed. The fluorescence in situ hybridization (FISH) method revealed the location of 45s rDNA (the 26s-5.8s-18s ribosomal RNA gene cluster) on the chromosomes involved. The number of 45s rDNA loci in the B. rapa, B. nigra and B. oleracea are five, three and two, respectively. The loci detected were systematically mapped on the idiograms of the three Brassica spp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Brassica campestris ; Multicolor ; FISH ; Self-incompatibility ; S-glycoprotein (SLG) gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The physical localization of the S-glycoprotein (SLG) locus in the chromosome of Brassica campestris L. ‘pekinensis’ cv ‘Kukai’ was visualized by multi-color fluorescent in situ hybridization (McFISH). ‘Kukai’, which is an F1 hybrid between two parental lines, T-17 and T-18, has two SLG genes from both T-17 and T-18. In this study, a 1.3-kb DNA fragment was amplified from the genomic DNA of T-17 by PCR using a set of primers specific to the class-I SLG. From the genomic DNA of T-18, no DNA fragment was amplified using these primers. In the genomic Southern hybridization, a cloned PCR product hybridized with the genomic DNA of T-17 or F1 but not with that of T-18. The PCR product had a sequence homology of approximately, 85% to another class-I SLG gene, SLG-9. Therefore, the PCR product from T-17 was named SLG-17, as it is thought to be a member of the class-I SLG. Using SLG-17 as the probe, FISH was carried out to visualize the position of the SLG locus. McFISH was also carried out simultaneously using the SLG-17 and SLG-9 genes as probes. The SLG-17 gene was detected as a doublet signal at the interstitial region close to the end of a small chromosome, with the signal site being identical to that of SLG-9. Therefore, it is concluded that the SLG-17 gene is localized at the interstitial region close to the end of the chromosome derived from T-17 in Brassica campestris L. ‘pekinensis’ cv ‘Kukai’.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...