ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-25
    Description: Molecular hydrogen (H2) released during serpentinization of mantle rocks is one of the main fuels for chemosynthetic life. Processes of H2 production at slow-spreading mid-ocean ridges (MORs) have received much attention in the past. Less well understood is serpentinization at passive continental margins where different rock types are involved (lherzolite instead of harzburgite/dunite at MORs) and the alteration temperatures tend to be lower (〈200°C vs. 〉200°C). To help closing this knowledge gap we investigated drill core samples from the West Iberia margin. Lherzolitic compositions and spinel geochemistry indicate that the exhumed peridotites resemble sub-continental lithospheric mantle. The rocks are strongly serpentinized, mainly consist of serpentine with little magnetite, and are generally brucite-free. Serpentine can be uncommonly Fe- rich, with XMg Mg/(Mg + Fe) 〈 0.8, and shows distinct compositional trends toward a cronstedtite endmember. Bulk rock and silicate fraction Fe(III)/ Fe ratios are 0.6–0.92 and 0.58–0.8, respectively; our data show that 2/3 of the ferric Fe is accounted for by Fe(III)- serpentine. Mass balance and thermodynamic calculations suggest that the sample’s initial serpentinization produced ∼120 to 〉300 mmol H2 per kg rock. The cold, late-stage weathering of the serpentinites at the seafloor caused additional H2 formation. These results suggest that the H2 generation potential evolves during the transition from continental break-up to ultraslow and, eventually, slow MOR spreading. Metamorphic phase assemblages systematically vary between these settings, which has consequences for H2 yields during serpentinization. At magma-poor rifted margins and ultraslow- spreading MORs, serpentine hosts most Fe(III). Hydrogen yields of 120 to 〉300 mmol and 50–150 mmol H2 per kg rock, respectively, may be expected at temperatures of 〈200°C. At slow-spreading MORs, in contrast, serpentinization may produce 200–350 mmol H2, most of which is related to magnetite formation at 〉200°C. Since, in comparison to slow-spreading MORs, geothermal gradients at magma-poor margins and ultraslow-spreading MORs are lower, larger volumes of low-temperature serpentinite should form in these settings. Serpentinization of lherzolitic rocks at magma-poor margins should produce particularly high amounts of H2 under conditions within the habitable zone. Magma-poor margins may hence be more relevant environments for hydrogenotrophic microbial life than previously thought.
    Description: research
    Keywords: serpentinization ; hydrogen generation ; magma-poor rifted margin ; mid-ocean ridges ; ultraslow spreading ; hydrothermal alteration ; chemosynthetic life ; seafloor weathering ; FID-GEO-DE-7
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...