ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Excitatory Amino Acid Antagonists  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • 1
    Publication Date: 1978-03-31
    Description: Mouse spinal neurons grown in tissue culture were used to study the electrophysiological pharmacology of the opiate peptide leucine-enkephalin. Enkephalin depressed glutamate-evoked responses in a noncompetitive manner independent of any other effects on membrane properties. The results demonstrate a neuromodulatory action of opiate peptide functionally distinct from the conventional neurotransmitter class of operation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, J L -- Neale, J H -- Smith, T G Jr -- Macdonald, R L -- New York, N.Y. -- Science. 1978 Mar 31;199(4336):1451-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/204016" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Endorphins/*pharmacology ; Enkephalins/antagonists & inhibitors/*pharmacology ; Excitatory Amino Acid Antagonists ; Glutamates/*pharmacology ; Iontophoresis ; Naloxone/pharmacology ; Neurons/*drug effects ; Spinal Cord ; Synapses/*drug effects ; Synaptic Transmission/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1979-09-28
    Description: Mouse spinal neurons grown in tissue culture were used to examine the membrane mechanisms of action of the peptide substance P. Two functionally distinct actions were observed, one being a rapidly desensitizing excitation, and the other being a dose-dependent, reversible depression of excitatory responses to the putative amino acid neurotransmitter glutamate. These effects on excitability suggest that substance P may play more than one role in intercellular communication in the nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vincent, J D -- Barker, J L -- New York, N.Y. -- Science. 1979 Sep 28;205(4413):1409-12.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/224464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Communication ; Cells, Cultured ; Electric Conductivity ; Excitatory Amino Acid Antagonists ; Glutamates/pharmacology ; Membrane Potentials ; Mice ; Neural Inhibition ; Spinal Cord/cytology/*physiology ; Substance P/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...