ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Evolution  (1)
  • maytansine  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of molecular evolution 19 (1982), S. 80-86 
    ISSN: 1432-1432
    Schlagwort(e): Microtubules ; Tubulin ; Evolution
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Tubulin subunits have been isolated from a variety of protists and marine invertebrates. The sources were: sperm tails of a tunicate (Ciona intestinalis), an abalone (Haliotis rufescens) and a sea anemone (Tealia crassicornis), the gill cilia of a clam (Mercenaria mercenaria), the cilia of a ciliate (Tetrahymena pyriformis) and the cytoplasm of a slime mold (Physarum polycephalum). All the β-tubulins, as characterised by their electropherograms after limited proteolytic cleavage withStaphylococcus aureus protease, were fairly similar. In contrast, two markedly different peptide patterns were found for the α-tubulins of (a) metazoan axonemes and (b) protistan axonemes, plant axonemes and slime mold cytoplasm. Metazoan axonemal α-tubulin peptide patterns could be further divided into two similar but distinct subtypes which did not correlate with the taxonomic divisions of deuterostomia and protostomia, or to different tubulins within an axoneme, or to different tubulins of flagella and cilia. We have postulated that these small differences may be accounted for by a simple glutamicaspartic acid exchange at a particular position in the α-tubulin sequence. Identical peptide patterns were observed for sea urchin and sea anemone sperm tail tubulins, proving that the metazoan type of axonemal tubulin arose before the divergence of bilateral and radial symmetric organisms. The close similarity of the slime mold cytoplasmic α-tubulin peptide pattern to protistan and plant axonemal α-tubulin patterns suggests that the same type of tubulin might be used to form both axonemal and cytoplasmic types of microtubules in protists and plants. The large structural constraints imposed upon this tubulin molecule probably allowed very little change in its primary structure, thus explaining the similarity of tubulins from organisms which diverged at such an early time in eukaryote history. Duplication and modification of the tubulin gene may then have led to the development of specific axonemal and cytoplasmic microtubules during the evolution of the metazoa.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-4943
    Schlagwort(e): Vinblastine ; tubulin ; microtubule-associated proteins ; tau ; maytansine
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Microtubule-associated proteins (MAPs) can promote microtubule assemblyin vitro. One of these MAPs (MAP2) consists of a short promoter domain which binds to the microtubule and promotes assembly and a long projection domain which projects out from the microtubule and may interact wth other cytoskeletal elements. We have previously shown that MAP2 and another MAP, tau, differ in their interactions with tubulin in that tau, but not MAP2, promotes extensive aggregation of tubulin into spiral clusters in the presence of vinblastine and that microtubules formed with MAP2 are more resistant than those formed with tau to the antimitotic drug maytansine [Luduena, R. F.,et al. (1984),J. Biol. Chem. 259, 12890–12898; Fellous, A.,et al. (1985),Cancer Res. 45, 5004–5010]. Here we have used chymotryptic digestion to remove the projection domain of MAP2 and examined the interaction of the digested MAP2 (ctMAP2) with tubulin in the presence of vinblastine and maytansine. We have found that ctMAP2 behaves very much like tau, but not like undigested MAP2, in the presence of vinblastine, in that ctMAP2 causes tubulin to polymerize into large clusters of spirals. In contrast, microtubule assembly in the presence of ctMAP2 is much more resistant to maytansine inhibition than is assembly in the presence of tau or undigested MAP2. Our results suggest that the projection domain of MAP2 may play a role in the interaction of tubulin with MAP2 during microtubule assembly.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...