ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Estuarine circulation  (2)
  • Entrainment  (1)
  • Fluid mud
  • American Geophysical Union  (4)
  • American Meteorological Society (AMS)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C05004, doi:10.1029/2003JC002094.
    Description: Rates of turbulent kinetic energy (TKE) production and buoyancy flux in the region immediately seaward (~1 km) of a highly stratified estuarine front at the mouth of the Fraser River (British Columbia, Canada) are calculated using a control volume approach. The calculations are based on field data obtained from shipboard instrumentation, specifically velocity data from a ship mounted acoustic Doppler current profiler (ADCP), and salinity data from a towed conductivity-temperature-depth (CTD) unit. The results allow for the calculation of vertical velocities in the water column, and the total vertical transport of salt and momentum. The vertical turbulent transport quantities (inline equation, inline equation) can then be estimated as the difference between the total transport and the advective transport. Estimated production is on the order of 10−3 m2 s−3, yielding a value of ɛ(νN2)−1 on the order of 104. This rate of TKE production is at the upper limit of reported values for ocean and coastal environments. Flux Richardson numbers in this highly energetic system generally range from 0.15 to 0.2, with most mixing occurring at gradient Richardson numbers slightly less than inline equation. These values compare favorably with other values in the literature that are associated with turbulence observations from regimes characterized by scales several orders of magnitude smaller than are present in the Fraser River.
    Description: This work was performed as a part of D. MacDonald’s Ph.D. thesis, and was funded by Office of Naval Research grants N000-14-97-10134 and N000-14-97- 10566, National Science Foundation grant OCE-9906787, a National Science Foundation graduate fellowship, and support from the WHOI Academic Programs Office.
    Keywords: Turbulence ; Entrainment ; Estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): F02004, doi:10.1029/2003JF000096.
    Description: A 9 month time series of tripod-mounted optical and acoustic measurements of sediment concentration and bed elevation was used to examine depositional processes in relationship to hydrodynamic variables in the Hudson River estuary. A series of cores was also taken directly under and adjacent to the acoustic measurements to examine the relation between the depositional processes and the resulting fine-scale stratigraphy. The measurements reveal that deposition occurs as a result of sediment flux convergence behind a salinity front and that the accumulation rates are sufficient to deposit up to 25 cm of new high-porosity sediment in a single ebb-tidal phase. Subsequent dewatering and erosion reduces the thickness of the initial deposit to several centimeters. These depositional events were only observed on spring tides. Ten depositional events during two spring tidal cycles produced a seasonal deposit of 18 cm, consistent with estimates of seasonal deposition from cores. A proxy for near-bed suspended grain size variations was estimated from the combined acoustic and optical measurements, implying that the erosional processes resuspend only the finer-grained sediments, thus leaving behind silt and very fine grained sand beds. The thickness of the deposited homogenous clayey silt beds, and the vertical separation between beds interlaminated with silt and very fine sand, are roughly consistent with the acoustic measurements of changes in bed elevations during deposition and erosion. The variability in individual bed thickness is the result of variations of processes over an individual tidal cycle and is not a product of variations over the spring neap fortnightly timescale.
    Description: The authors would like to acknowledge the Hudson River Foundation, who provided funding for this work under grant 009/00A.
    Keywords: Sediment transport ; Estuarine processes ; Fluid mud
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4784-4802, doi: 10.1029/2019JC015006.
    Description: Modifications for navigation since the late 1800s have increased channel depth (H) in the lower Hudson River estuary by 10–30%, and at the mouth the depth has more than doubled. Observations along the lower estuary show that both salinity and stratification have increased over the past century. Model results comparing predredging bathymetry from the 1860s with modern conditions indicate an increase in the salinity intrusion of about 30%, which is roughly consistent with the H5/3 scaling expected from theory for salt flux dominated by steady exchange. While modifications including a recent deepening project have been concentrated near the mouth, the changes increase salinity and threaten drinking water supplies more than 100 km landward. The deepening has not changed the responses to river discharge (Qr) of the salinity intrusion (~Qr−1/3) or mean stratification (Qr2/3). Surprisingly, the increase in salinity intrusion with channel deepening results in almost no change in the estuarine circulation. This contrasts sharply with local scaling based on local dynamics of an H2 dependence, but it is consistent with a steady state salt balance that allows scaling of the estuarine circulation based on external forcing factors and is independent of depth. In contrast, the observed and modeled increases in stratification are opposite of expectations from the steady state balance, which could be due to reduction in mixing with loss of shallow subtidal regions. Overall, the mean shift in estuarine parameter space due to channel deepening has been modest compared with the monthly‐to‐seasonal variability due to tides and river discharge.
    Description: Funding was provided by NSF Coastal SEES (OCE 1325136). Data supporting this study are posted to Zenodo (https://doi.org/10.5281/zenodo.2551285) or are available by contacting the author.
    Description: 2019-12-07
    Keywords: Estuarine circulation ; Salinity intrusion ; Stratification ; Dredging ; Hudson River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geyer, W. R., Ralston, D. K., & Chen, J. Mechanisms of exchange flow in an estuary with a narrow, deep channel and wide, shallow shoals. Journal of Geophysical Research: Oceans, 125(12), (2020): e2020JC016092, https://doi.org/10.1029/2020JC016092.
    Description: Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal.
    Description: The ideas in this paper were influenced by discussions with Robert Chant. Funding was provided by National Science Foundation grants OCE‐1325136, OCE‐1634490, and OCE‐1736539.
    Description: 2021-04-29
    Keywords: Estuarine circulation ; Tidal dispersion ; Lateral circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...