ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05T09, doi:10.1029/2009GC002977.
    Description: Detailed mapping, sampling, and geochemical analyses of lava flows erupted from an ∼18 km long section of the northern East Pacific Rise (EPR) from 9°46′N to 9°56′N during 2005–2006 provide unique data pertaining to the short-term thermochemical changes in a mid-ocean ridge magmatic system. The 2005–2006 lavas are typical normal mid-oceanic ridge basalt with strongly depleted incompatible trace element patterns with marked negative Sr and Eu/Eu* anomalies and are slightly more evolved than lavas erupted in 1991–1992 at the same location on the EPR. Spatial geochemical differences show that lavas from the northern and southern limits of the 2005–2006 eruption are more evolved than those erupted in the central portion of the fissure system. Similar spatial patterns observed in 1991–1992 lavas suggest geochemical gradients are preserved over decadal time scales. Products of northern axial and off-axis fissure eruptions are consistent with the eruption of cooler, more fractionated lavas that also record a parental melt component not observed in the main suite of 2005–2006 lavas. Radiogenic isotopic ratios for 2005–2006 lavas fall within larger isotopic fields defined for young axial lavas from 9°N to 10°N EPR, including those from the 1991–1992 eruption. Geochemical data from the 2005–2006 eruption are consistent with an invariable mantle source over the spatial extent of the eruption and petrogenetic processes (e.g., fractional crystallization and magma mixing) operating within the crystal mush zone and axial magma chamber (AMC) before and during the 13 year repose period. Geochemical modeling suggests that the 2005–2006 lavas represent differentiated residual liquids from the 1991–1992 eruption that were modified by melts added from deeper within the crust and that the eruption was not initiated by the injection of hotter, more primitive basalt directly into the AMC. Rather, the eruption was driven by AMC pressurization from persistent or episodic addition of more evolved magma from the crystal mush zone into the overlying subridge AMC during the period between the two eruptions. Heat balance calculations of a hydrothermally cooled AMC support this model and show that continual addition of melt from the mush zone was required to maintain a sizable AMC over this time interval.
    Description: This work has been supported by NSF grants OCE‐0525863 and OCE‐0732366 (D. J. Fornari and S. A. Soule), OCE‐0636469 (K. H. Rubin), and OCE‐ 0138088 (M. R. Perfit), as well as postdoctoral fellowship funds from the University of Florida.
    Keywords: Mid-ocean ridge basalt ; East Pacific Rise ; Eruption ; Trace elements ; Radiogenic isotopes ; Fractional crystallization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4093–4115, doi:10.1002/2014GC005387.
    Description: We present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
    Description: Support for R.W.E. during this study was by internal NOAA funding to the NOAA Vents Program (now Earth-Ocean Interactions Program). The NSF Ridge 2000 and MARGINS programs played a major role in the planning and justification for the 2009 rapid response proposal that funded the May 2009 expedition. MBARI provided support and outstanding postprocessing of the multibeam bathymetry from the D. Allan B. AUV multibeam sonar used in this study. NSF also provided major funding for the 2009 expedition (OCE930025 and OCE-0934660 to JAR) and for the 210Po-210Pb radiometric dating (OCE-0929881 and for the 210Po-210Pb radiometric dating (OCE-0929881 to KHR)). The NOAA Office of Exploration and Research provided major funding for the 2009 and 2012 field programs.
    Description: 2015-04-30
    Keywords: Seamount ; Lau ; Volcano ; Eruption ; Submarine ; Multibeam
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...