ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-26
    Description: Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed approximately 600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058384/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058384/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johannessen, Cory M -- Boehm, Jesse S -- Kim, So Young -- Thomas, Sapana R -- Wardwell, Leslie -- Johnson, Laura A -- Emery, Caroline M -- Stransky, Nicolas -- Cogdill, Alexandria P -- Barretina, Jordi -- Caponigro, Giordano -- Hieronymus, Haley -- Murray, Ryan R -- Salehi-Ashtiani, Kourosh -- Hill, David E -- Vidal, Marc -- Zhao, Jean J -- Yang, Xiaoping -- Alkan, Ozan -- Kim, Sungjoon -- Harris, Jennifer L -- Wilson, Christopher J -- Myer, Vic E -- Finan, Peter M -- Root, David E -- Roberts, Thomas M -- Golub, Todd -- Flaherty, Keith T -- Dummer, Reinhard -- Weber, Barbara L -- Sellers, William R -- Schlegel, Robert -- Wargo, Jennifer A -- Hahn, William C -- Garraway, Levi A -- CA134502/CA/NCI NIH HHS/ -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- K08 CA115927/CA/NCI NIH HHS/ -- K08 CA115927-05/CA/NCI NIH HHS/ -- P50 CA093683/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R33 CA128625/CA/NCI NIH HHS/ -- RC2 CA148268/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):968-72. doi: 10.1038/nature09627. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107320" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Cell Line, Tumor ; Clinical Trials as Topic ; *Drug Resistance, Neoplasm/drug effects/genetics ; Enzyme Activation/drug effects ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Library ; Humans ; Indoles/pharmacology/therapeutic use ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Melanoma/drug therapy/enzymology/genetics/metabolism ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Open Reading Frames/genetics ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins B-raf/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Proto-Oncogene Proteins c-raf/genetics/metabolism ; Sulfonamides/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-09-04
    Description: Mitogen-activated protein (MAP) kinases are 42- and 44-kD serine-threonine protein kinases that are activated by tyrosine and threonine phosphorylation in cells stimulated with mitogens and growth factors. MAP kinase and the protein kinase that activates it (MAP kinase kinase) were constitutively activated in NIH 3T3 cells infected with viruses containing either of two oncogenic forms (p35EC12, p3722W) of the c-Raf-1 protein kinase. The v-Raf proteins purified from cells infected with EC12 or 22W viruses activated MAP kinase kinase from skeletal muscle in vitro. Furthermore, a bacterially expressed v-Raf fusion protein (glutathione S-transferase-p3722W) also activated MAP kinase kinase in vitro. These findings suggest that one function of c-Raf-1 in mitogenic signaling is to phosphorylate and activate MAP kinase kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dent, P -- Haser, W -- Haystead, T A -- Vincent, L A -- Roberts, T M -- Sturgill, T W -- CA50661/CA/NCI NIH HHS/ -- DK41077/DK/NIDDK NIH HHS/ -- HD24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Virginia, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1326789" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Cell Line ; Cell Line, Transformed ; Enzyme Activation/drug effects ; Immunosorbent Techniques ; Mice ; Mitogen-Activated Protein Kinase Kinases ; Muscles/enzymology ; Oncogene Proteins v-raf ; Phosphorylation ; Protein Kinases/*metabolism ; Proto-Oncogene Proteins/pharmacology ; Proto-Oncogene Proteins c-raf ; Recombinant Fusion Proteins/pharmacology ; Retroviridae Proteins, Oncogenic/genetics/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...