ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over the US continent.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Airborne measurements of NO(x) total reactive nitrogen (NO(y)), O3 and condensation nuclei (CN) were made within air traffic corridors over the U.S. and North Atlantic regions (35-60 deg N) in the fall of 1997. NO(x) and NO(y) data obtained in the lowermost stratosphere (LS) were examined using the calculated increase in NO(y) ((delta)NO(y)) along five-day back trajectories as a parameter to identify possible effects of aircraft on reactive nitrogen. It is very likely that aircraft emissions had a significant impact on the NO(x) levels in the LS inasmuch as the NO(s), mixing ratios at 8.5-12 km were significantly correlated with the independent parameters of aircraft emissions, i.e., (delta)NO(y) levels and CN values. In order to estimate quantitatively the impact of aircraft emissions on NO(x), and CN, the background levels of CN and NO(x) at O3 = 100-200 ppbv were derived from the correlations of these quantities with (delta)NO(y)). On average, the aircraft emissions are estimated to have increased the NO(x) and CN values by 130 pptv and 400 STP,cc, respectively, which corresponds to 70 -/+ 30 % and 30 -/+ 20 % of the observed median values.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Oxygenated hydrocarbons are thought to be important components of the atmosphere but, with the exception of formaldehyde, very little about their distribution and fate is known. Aircraft measurements of acetone (CH3COCH3), PAN (CH3CO3NO2) and other organic species (e. g. acetaldehyde, methanol and ethanol) have been performed over the Pacific, the southern Atlantic, and the subarctic atmospheres. Sampled areas extended from 0 to 12 km altitude over latitudes of 70 deg N to 40 deg S. All measurements are based on real time in-situ analysis of cryogenically preconcentrated air samples. Substantial concentrations of these oxygenated species (10-2000 ppt) have been observed at all altitudes and geographical locations in the troposphere. Important sources include, emissions from biomass burning, plant and vegetation, secondary oxidation of primary non-methane hydrocarbons, and man-made emissions. Direct measurements within smoke plumes have been used to estimate the biomass burning source. Photochemistry studies are used to suggest that acetone could provide a major source of peroxyacetyl radicals in the atmosphere and play an important role in sequestering reactive nitrogen. Model calculations show that acetone photolysis contributes significantly to PAN formation in the middle and upper troposphere.
    Keywords: Environment Pollution
    Type: CACGP and IGAC Symposia; Sep 05, 1994 - Sep 09, 1994; Fuji-Yoshida; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: In recent years NASA has conducted a series of airborne campaigns (e. g. SEAC4RS*, ARCTAS, INTEX-A/B) over North America using an instrumented DC-8 aircraft equipped to measure a very large number of gaseous and aerosol constituents including several unique tracers. In these campaigns wild fires were extensively sampled near source as well as downwind after aging. The data provided detailed information on the composition and chemistry of fire emissions under a variety of atmospheric conditions as well as their interactions with rural and urban air pollution. Major fires studied including the California Rim fire in 2013 (SEAC4RS), the 2008 California wildfires (ARCTAS), and the Alaskan fires downwind over eastern US (INTEX-A). Although some fire plumes contained virtually no O3 enhancement, others showed significant ozone formation. Over Los Angeles, the highest O3 mixing ratios were observed in fire influenced urban air masses. Attempts to simulate these interactions using state of the art models were only minimally successful and indicated several shortcomings in simulating fire emission influences on urban smog formation. A variety of secondary oxidation products (e. g. O3, PAN, HCHO) were substantially underestimated. We will discuss the data collected in fire influenced air masses and their potential air quality implications.
    Keywords: Environment Pollution
    Type: ARC-E-DAA-TN16583 , Quadrennial ICACGP Symposium; Sep 22, 2014 - Sep 26, 2014; Natal; Brazil|Quadrennial IGAC Science Conference on Atmospheric Chemistry; Sep 22, 2014 - Sep 26, 2014; Natal; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics.
    Keywords: Environment Pollution
    Type: NASA/CR-96-207268 , NAS 1.26:207268 , Paper-96JD00336 , Journal of Geophysical Research (ISSN 0148-0227); 101; D19; 24,235-24,250
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Measurements of NO, NO(y), O3, and CO were made during NASA's Global Tropospheric Experiment/Pacific Exploratory Mission-West B (GTE/PEM-West B) carried out over the western Pacific in February and March 1994. NO(x) was calculated from NO using a photostationary state model ((NO(x)(sub mc)). Correlations between these species are presented, and some insights into the sources of NO(x) and NO(y) are described. The boundaries between the lower, middle, and upper troposphere have been defined at potential temperatures of 311 K and 328 K, which correspond to the geometric altitudes of about 5 and 9 km at 30degN. Enhancements in the mixing ratios of NO(y) and CO were observed in the lower and middle troposphere. A positive correlation was found between these two species suggesting that the high NO(y) values were due to anthropogenic emissions over the continental surface. On the other hand, O3 increased little with increase in CO. As a result, NO(y)/O3 ratios were higher in air more influenced by pollution. NO(y), values in 55 and 28% of the air masses sampled in the lower and middle troposphere, respectively, were higher than the clean free tropospheric NO(y)-O3 range when O3 values simultaneously observed were used. High (NOx)mc/NOy ratios between 0.15 and 0.3 were found in the boundary layer with relatively low mixing ratios of CO and NOy during the three flights. These air masses were transported from a higher altitude (approximately 5 km) and a higher latitude (approximately 50degN) within a few days. The peroxyacetyl nitrate (PAN)/NO(y) ratios were generally high (approximately 0.4) in these air masses, and the thermal decomposition of PAN was a probable source of NO(x). In the middle troposphere the (NO(x))mc mixing ratio did not generally increase with NO(y) or CO, suggesting that the transport of air masses affected by anthropogenic emissions did not increase the NO(x) level significantly. In the upper troposphere, very minor effects from the continental surface sources were seen in the CO mixing ratio. By contrast, NO(y) values in 33% of the air masses were higher than those expected when stratospheric air intrusion is assumed to be a single source of NO(y) based on NO(y)-O3 correlation analyses. This result suggests significant free tropospheric NO(y) sources, namely exhaust from the aircraft and NO production by lightning activity. In fact, spikes in the (NO(x))(sub m)c mixing ratios were observed near the aircraft corridor south of Tokyo at an altitude of 10 km. These two free tropospheric NO(x) sources were considered to be important in determining the levels of the upper tropospheric NO(x) and NO(y) during PEM-West B.
    Keywords: Environment Pollution
    Type: Paper-97JD02085 , Journal of Geophysical Research (ISSN 0148-0227); 102; D23; 28,385-28,404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The chemical characteristics of air parcels over the tropical South Atlantic during September - October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3CL and minimal enhancements of C2CL40, and various ChloroFluoroCarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NO(x) were significantly enhanced (up to approx. 1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NO(x) were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NO(x) to the upper troposphere. Methane exhibited a monotonic increase with altitude from approx. 1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH, contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4 and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport coupled with large-scale circulations conveys biomass burning, urban, and natural emissions to the upper troposphere over the South Atlantic basin. Slow subsidence over the eastern South Atlantic basin may play an important role in establishing and maintaining the rather uniform vertical distribution of long-lived species over this region. The common occurrence of values greater than 1 for the ratio CH3OOH/H2O2 in the upper troposphere suggests that precipitation scavenging effectively removed highly water soluble gases (H2O2, HNO3, HCOOH, and CH3COOH) and aerosols during vertical convective transport over the continents. However, horizontal injection of biomass burning products over the South Atlantic, particularly water soluble species and aerosol particles, was frequent below 6 km altitude.
    Keywords: Environment Pollution
    Type: NASA/CR-96-207359 , NAS 1.26:207359 , Paper-95JDO3630 , Journal of Geophysical Research (ISSN 0148-0227); 101; D19; 24,187-24,202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Aerosol sampling for the determination of the concentrations of soluble ionic species and the natural radionuclides Be-7 and Pb-210 was conducted from the NASA DC-8 over the western Pacific as part of GTE/PEM-West B during February - March 1994. Concentrations of most soluble ionic species in the free troposphere were higher in samples collected on flights originating from Hong Kong and Japan than those collected further east over the open ocean. In both regions the measured concentrations were higher than those found during PEM-West A (fall 1991). Activities of Pb-210, a tracer of air masses influenced by sources on the Asian continent, showed the same patterns. These data indicate the effect of stronger continental outflow from Asia over the western Pacific during the spring compared to fall season. For readily scavenged aerosol-associated species and soluble acidic gases the strongest indications of Asian outflow were restricted to altitudes below 6 km. The distribution of the continental tracer Pb-210 was also compared to those of a large number of gas phase species measured on the DC-8. Relatively strong correlations were found with O3, and peroxyacetylnitrate (PAN), but only during the flights over the remote Pacific. During PEM-West A, similar correlations were seen, but they were stronger near Asia. We believe that correlations are a signature of continental air that has been processed by deep wet convection over land before being advected over the ocean. One flight over the Sea of Japan provided the opportunity to sample upper troposphere/lower stratosphere air in and around a tropopause fold. Concentrations of Be-7 reached 7 pCi/cu m STP, and peak O3, mixing ratios of 480 ppb were encountered at 10.7 km. The Be-7 data are used to estimate the fraction of stratospheric air mixed down into the troposphere by circulation in the fold.
    Keywords: Environment Pollution
    Type: NASA/CR-97-207351 , NAS 1.26:207351 , Paper-96JD02981 , Journal of Geophysical Research (ISSN 0148-0227); 102; D23; 28,287-28,302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Aerosol sampling for the determination of the concentrations of soluble ionic species and the natural radionuclides Be-7 and Pb-210 was conducted from the NASA DC-8 over the western Pacific as part of GTE/PEM-West B during February - March 1994. Concentrations of most soluble ionic species in the free troposphere were higher in samples collected on flights originating from Hong Kong and Japan than those collected further east over the open ocean. In both regions the measured concentrations were higher than those found during PEM-West A (fall 1991). Activities of Pb-210 tracer of air masses influenced by sources on the Asian continent, showed the same patterns. These data indicate the effect of stronger continental outflow from Asia over the western Pacific during the spring compared to fall season. For readily scavenged aerosol-associated species and soluble acidic gases the strongest indications of Asian outflow were restricted to altitudes below 6 km. The distribution of the continental tracer Pb-210 was also compared to those of a large number of gas phase species measured on the DC-8. Relatively strong correlations were found with O3 and peroxyacetylnitrate (PAN), but only during the flights over the remote Pacific. During PEM-West A, similar correlations were seen, but they were stronger near Asia. We believe that these correlations are a signature of continental air that has been processed by deep wet convection over land before being advected over the ocean. One flight over the Sea of Japan provided the opportunity to sample upper troposphere/lower stratosphere air in and around a tropopause fold. Concentrations of Be-7 reached 7 pCi/cu m STP, and peak O3, mixing ratios of 480 ppb were encountered at 10.7 km. The Be-7 data are used to estimate the fraction of stratospheric air mixed down into the troposphere by circulation in the fold.
    Keywords: Environment Pollution
    Type: Paper-96JD02981 , Journal of Geophysical Research (ISSN 0148-0227); 102; D23; 28,287-28,302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: An important objective of the Pacific Exploratory Mission-West A (PEM-West A) was the chemical characterization of the outflow of tropospheric trace gases and aerosol particles from the Asian continent over the western Pacific Ocean. This paper summarizes the chemistry of this outflow during the period September - October 1991. The vertical distributions of CO, C2H6, and NO(x), showed regions of outflow at altitudes below 2 km and from 8 to 12 km. Mixing ratios of CO were approx. equals 130 parts per billion by volume (ppbv), approx. equals 1OOO parts per trillion by volume (pptv) for C2H6, and approx. equals 100 pptv for NO(x) in both of these regions. Direct outflow of Asian industrial materials was clearly evident at altitudes below 2 km, where halocarbon tracer compounds such as CH3CCl3 and C2Cl4 were enhanced about threefold compared to aged Pacific air. The source attribution of species outflowing from Asia to the Pacific at 8-12 km altitude was not straightforward. Above 10 km altitude there were substantial enhancements of NO(y), O3, CO, CH4, SO2, C2H6, C3H8, C2H2, and aerosol Pb-210 but not halocarbon industrial tracers. These air masses were rich in nitrogen relative to sulfur and contained ratios of C2H2/CO and C3H8/C2H6 (approx. equals l.5 and 0.1 respectively) indicative of several- day-old combustion emissions. It is unclear if these emissions were of Asian origin, or if they were rapidly transported to this region from Europe by the high wind speeds in this tropospheric region (60 - 70 m/s). The significant cyclonic activity over Asia at this time could have transported to the upper troposphere emissions from biomass burning in Southeast Asia or emissions from the extensive use of various biomass materials for cooking and space heating. Apparently, the emissions in the upper troposphere were brought there by wet convective systems since water-soluble gases and aerosols were depleted in these air masses. Near 9 km altitude there was a distinct regional outflow that appeared to be heavily influenced by biogenic processes on the Asian continent, especially from the southeastern area. These air masses contained CH4 in excess of 1800 ppbv, while CO2 and OCS were significantly depleted (349 - 352 ppmv and 450 - 500 pptv, respectively). This signature seemingly reflected CH4 emissions from wetlands and rice paddies with coincident biospheric uptake of tropospheric CO2 and OCS.
    Keywords: Environment Pollution
    Type: NASA/CR-96-207466 , NAS 1.26:207466 , Paper-95JD01044 , Journal of Geophysical Research (ISSN 0148-0227); 101; D1; 1713-1725
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...