ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: High-sensitivity detection of formaldehyde (CH2O) at 3.5315 micrometers (2831.64 cm-1) is reported with a diode-laser-pumped, fiber-coupled, periodically poled LiNbO3 spectroscopic source. This source replaced the Pb-salt diode laser Dewar assembly of an existing tunable diode-laser absorption spectrometer designed for ultrasensitive detection of CH2O. Spectra are recorded with 2f-modulation spectroscopy and zero-air rapid background subtraction. Initial measurements reported here, determined from multiple measurements of a flowing 7.7 parts per billion by volume (ppbv, parts in 10(9)) CH2O in air mixture, indicate replicate precisions as low as 0.24 ppbv.
    Keywords: Environment Pollution
    Type: Applied optics (ISSN 0003-6935); Volume 39; 24; 4436-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We have found a surprisingly informative decomposition of the complex question of smoggy ozone production (basically, [HO2] in a more locally determined field of [NO]) in the process of linked investigations of modestly smoggy Eastern North America (by NASA aircraft, July 2004) and rather polluted Flushing, NYC (Queens College, July, 2001). In both rural and very polluted situations, we find that a simple contour graph parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and j(sub rads) [HCHO]: Po(O3) = c (j(sub rads) [HCHO])(sup a) [HCHO](sup b). Here j(sub rads) is the photolysis of HCHO to radicals, presumably capturing many harder-UV photolytic processes and the principle ozone production is that due to HO2; mechanisms suggest that ozone production due to RO2 is closely correlated, often suggesting a limited range of different proportionality factors. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product j(sub rads) [HCHO] guages the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], and indeed, all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources in a convenient way. Are there other, simple, near-terminal oxidized VOC's which help guage ozone production and aerosol particle formation? Regarding particles, we report on, to the extent NASA Research resources allow, on appealing relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol (including sulfate. Since j(sub rads) [HCHO] provides a time-scale, we may understand distant-plume particle production in a more quantitative manner. Additionally we report on a statistical search in the nearer field for relationships between glyoxals (important near-terminal aromatic and isoprene reaction products) and aerosol production, looking for VOC's that might be most implicated. All three variables j(sub rads), [HCHO], and [NO] are relatively easily measured in widespread air pollution monitoring networks, and all are deducible form space-borne observations, though estimation of [NO] from [NO2] (the species observable from space) may require care. We report also on airborne and surface observations of HCHO, suggesting that concentrated (urban) and more diffuse (forest) sources may be distinguishable from space. The use of the 3.58 micron microwindow for HCHO remote sensing should allow much sharper resolution of HCHO than the UV. UV sensing requires large and expensive instruments, but even these seem justified since formaldehyde is so informative.
    Keywords: Environment Pollution
    Type: ARC-E-DAA-TN282 , American Geophysical Union Fall Meeting; Dec 15, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-23
    Description: The San Joaquin Valley (SJV) of California experiences high concentrations of PM2.5 (particulate matter with aerodynamic diameter 2.5 m) during episodes of meteorological stagnation in winter. Modeling PM2.5 NH4NO3 during these episodes is challenging because it involves simulating meteorology in complex terrain under low wind speed and vertically stratified conditions, representing complex pollutant emissions distributions, and simulating daytime and nighttime chemistry that can be influenced by the mixing of urban and rural air masses. A rich dataset of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign in SJV in January and February 2013. Here, NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model version 5.1, predictions are evaluated with the DISCOVER-AQ dataset, and process analysis modeling is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-h average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agreed well with measurements in Fresno, although partitioning of total nitrate to HNO3 was sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and the spatial allocation of NH3 emissions could benefit from additional work, especially near Hanford. HNO3 production via daytime and nighttime pathways is reasonably consistent with the conceptual model of NH4NO3 formation in SJV, and production peaked aloft between about 160 and 240 m in the model. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3 production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease.
    Keywords: Environment Pollution
    Type: NF1676L-29304 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 9; 4727-4745
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (C(sub n)H(sub 2n+1)COO2NO2), and organic nitrates (C(sub n)H(sub 2n+1)ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (Summation of OVOC) was nearly twice that of nonmethane hydrocarbons (Summation of C2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HO x ) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C / yr) but remain poorly quantified.
    Keywords: Environment Pollution
    Type: Journal of Geophysical Research (ISSN 0148-0227); 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Measurements of CH2O from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 during the summer 2004 INTEX-NA (Intercontinental Chemical Transport Experiment - North America) campaign to test our understanding of convection and production mechanisms in the upper troposphere (UT, 6-12-km) over continental North America and the North Atlantic Ocean. Point-by-point comparisons with box model calculations, when MHP (CH3OOH) measurements were available for model constraint, resulted in a median CH2O measurement/model ratio of 0.91 in the UT. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. At least 66% to 73% of these elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. This distinction is important, since the effects from the former can last for over a week or more compared to one day or less in the case of convective transport of CH2O itself. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from MHP, methanol, PAN type compounds, and ketones, in descending order of their contribution. In the presence of elevated NO from lightning and potentially from the stratosphere, there was a definite trend in the CH2O discrepancy, which for the highest NO mixing ratios produced a median CH2O measurement/model ratio of 3.9 in the 10-12-km range. Discrepancies in CH2O and HO2 in the UT with NO were highly correlated and this provided further information as to the possible mechanism(s) responsible. These discrepancies with NO are consistent with additional production sources of both gases involving CH3O2 + NO reactions, most likely caused by unmeasured hydrocarbons.
    Keywords: Environment Pollution
    Type: LF99-5463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: We analyze aircraft observations obtained during INTEX-A (1 July 14 - August 2004) to examine the summertime influence of Asian pollution in the free troposphere over North America. By applying correlation analysis and Principal Component Analysis (PCA) to the observations between 6-12 km, we find dominant influences from recent convection and lightning (13 percent of observations), Asia (7 percent), the lower stratosphere (7 percent), and boreal forest fires (2 percent), with the remaining 71 percent assigned to background. Asian airmasses are marked by high levels of CO, O3, HCN, PAN, acetylene, benzene, methanol, and SO4(2-). The partitioning of reactive nitrogen species in the Asian plumes is dominated by peroxyacetyl nitrate (PAN) (approximately 600 pptv), with varying NO(x)/HNO3 ratios in individual plumes consistent with different plumes ages ranging from 3 to 9 days. Export of Asian pollution in warm conveyor belts of mid-latitude cyclones, deep convection, and lifting in typhoons all contributed to the five major Asian pollution plumes. Compared to past measurement campaigns of Asian outflow during spring, INTEX-A observations display unique characteristics: lower levels of anthropogenic pollutants (CO, propane, ethane, benzene) due to their shorter summer lifetimes; higher levels of biogenic tracers (methanol and acetone) because of a more active biosphere; as well as higher levels of PAN, NO(x), HNO3, and O3 (more active photochemistry possibly enhanced by injection of lightning NO(x)). The high delta O3/delta CO ratio (0.76 mol mol(exp -1)) of Asian plumes during INTEX-A is due to a combination of strong photochemical production and mixing with stratospheric air along isentropic surfaces. The GEOS-Chem global chemical transport model captures the timing and location of the Asian plumes remarkably well. However, it significantly underestimates the magnitude of the enhancements.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: We use observations from two aircraft during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of the regional sources, chemical evolution, and export of nitrogen oxides. The boundary layer NO(x) data provide top-down verification of a 50% decrease in power plant and industry NO(x) emissions over the eastern United States between 1999 and 2004. Observed 8-12 8 km NO(x) concentrations in ICARTT were 0.55 +/- 36 ppbv, much larger than in previous United States aircraft campaigns (ELCHEM, SUCCESS, SONEX). We show that regional lightning was the dominant source of this NO(x) and increased upper tropospheric ozone by 10 ppbv. Simulating the ICARTT upper tropospheric NO(x) observations with GEOS-Chem require a factor of 4 increase in the model NO(x) yield per flash (to 500 mol/flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, and if correct would imply a broader lightning influence in the upper troposphere than presently thought.An NO(y)-CO correlation analysis of the fraction f of North American NO(x) emissions vented to the free troposphere as NO(y) (sum of NO(x) and its oxidation products PAN and HNO3) s shows observed f=16+/-10 percent and modeled f=14 +/- 8 percent, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NO(y) export efficiency and speciation, supporting previous model estimates of a large U.S. contribution to tropospheric ozone through NO(x) and PAN export.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI (Ozone Monitoring Instrument), GOME (Global Ozone Monitoring Experiment) 2A, GOME (Global Ozone Monitoring Experiment) 2B and OMPS (Ozone Mapping and Profiler Suite)) and three different research groups. The GEOS (Goddard Earth Observing System)-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r equals 0.4 to 0.8 on a 0.5 degree by 0.5 degree grid) and in their day-to-day variability (r equals 0.5 to 0.8). However, all retrievals are biased low in the mean by 20 to 51 percent, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA (Ozone Monitoring Instrument - Belgian Institute for Space Aeronomy), which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC (sup 4) RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN41610 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 16; 21; 13477-13490
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with (Delta)O3/(Delta)CO, (Delta)PAN/(Delta)NOy, and (Delta)nitrate/(Delta)NOy reaching approx. 0.1, approx. 0.3, and approx.0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of approx. 2) to be equivalent to approx. 2% SO2 from coal combustion and approx. 1% NOx and approx. 9% CO from mobile sources.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN41641 , Journal of Geophysical Research Atmospheres (ISSN 2169-897X); 121; 12; 7383–7414
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...