ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-25
    Description: In situ aerosol extinction and absorption spectra covering the 300-700 nm range at 1 nm spectral resolution were measured aboard the R/V Onnuri during the Korea U.S. Ocean Color (KORUS-OC) cruise around the Korean Peninsula from May 21 through June 3, 2016. Total absorption spectra were obtained from aerosols collected on glass fiber filters and subsequently placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer, 0.2 nm spectral resolution). Absorption spectra from methanol and deionized water extracts of aerosols collected on Teflon filters were measured in a liquid waveguide capillary cell (World Precision Instruments LWCC- 3100, ~0.4 nm spectral resolution). Extinction spectra were measured with a custom built instrument (SpEx, ~0.8 nm spectral resolution). The measurements were obtained at a height of ~10 m above the sea surface with an inlet that limited the measured aerosols to diameters 1.3 m. All four sets of spectra exhibit curvature in log-log space with 2nd order polynomials providing a better fit to the measured spectra than power law fits. The deionized water extracts were also analyzed with an ion chromatograph (Dionex ICS-3000 Ion Chromatography System) and with an aerosol mass spectrometer (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer) to examine chemical composition. These data indicate the optical spectra are sensitive to differing chemical properties of the measured ambient aerosols and suggest differing sources and/or atmospheric processes influence the observed optical signatures. The measured suite of spectra are combined to examine the spectral characteristics of single scattering albedo, as well as to examine the contribution of soluble absorbing chromophores to the total absorption spectra. Additional measurements made during the affiliated Korea U.S. - Air Quality (KORUS-AQ) campaign will be used to provide further insight on the observed spectral characteristics.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN70994 , American Geophysical Union Fall Meeting; Dec 10, 2018 - Dec 14, 2019; Washington,DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-23
    Description: This study reports on the first set of ambient observations of sub-1.0 hygroscopicity values (i.e., growth factor, ratio of humidified-to-dry diameter, GF=Dp,wet/Dp,dry and f(RH), ratio of humidified-to-dry scattering coefficients, less than 1) with consistency across different instruments, regions, and platforms. We utilized data from a shipboard humidified tandem differential mobility analyzer (HTDMA) during Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) in 2011, multiple instruments on the DC-8 aircraft during Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) in 2013, as well as the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) during measurement intensives during Summer 2014 and Winter 2015 in Tucson, Arizona. Sub-1.0 GFs were observed across the range of relative humidity (RH) investigated (75-95%), and did not show a RH-dependent trend in value below 1.0 or frequency of occurrence. A commonality between suppressed hygroscopicity in these experiments, including sub-1.0 GF, was the presence of smoke. Evidence of externally mixed aerosol, and thus multiple GFs, was observed during smoke periods resulting in at least one mode with GF 〈 1. Time periods during which the DASH-SP detected externally mixed aerosol coincide with sub-1.0 f(RH) observations. Mechanisms responsible for sub-1.0 hygroscopicity are discussed and include refractive index (RI) modifications due to aqueous processing, particle restructuring, and volatilization effects. To further investigate ambient observations of sub-1.0 GFs, f(RH), and particle restructuring, modifying hygroscopicity instruments with pre-humidification modules is recommended.
    Keywords: Environment Pollution
    Type: NF1676L-24454 , Journal of Geophysical Research Atmospheres (ISSN 0148-0227) (e-ISSN 2156-2202); 121; 22; 661-677
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...