ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution  (3)
  • METEOROLOGY AND CLIMATOLOGY  (2)
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2014-09-16
    Description: Atmospheric teleconnections in the medium to long (10-90 days) time scales focusing on the interactions between extratropical circulation and tropical convection are studied. In a continuing effort to study short-term climate variability and atmospheric teleconnection as inferred from satellite observed outgoing longwave radiation, the low frequency variability (LFB) of tropical and extratropical cloud fluctuation over the Pacific was studied. It was found that during the Northern winter, the LFV of tropical cloud fluctuation is dominated by a 40-50 day dipole-like oscillation linking convection over Indonesia and the equatorial central Pacific. Eastward propagating signals appearing as outbursts of convective cloud clusters originating from the Indian Ocean appear to periodically feed energy into this dipole oscillation. It was also found that there are cloud features appearing over East Asia and subsequently over the eastern North Pacific which vary coherently with the tropical dipole anomaly. Based on analysis and an a priori phenomenological model, it is believed that the cloud fluctuations are associated with two space/time extended normal modes of tropical-extratropical interactions over the Pacific involving a coupling between the tropical dipole convective heating anomaly with cold surges over East Asia, and blocking over the eastern North Pacific respectively.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Global Scale Atmospheric Processes Res. Program Review; p 155-157
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The operational global analyses from the two major U.S. numerical weather prediction centers, the Navy's Fleet Numerical Oceanography Center and the National Meteorological Center, are used to describe the synoptic-scale features of the 1 Nov. 1992 to 28 Feb. 1993 TOGA COARE intensive observing period (IOP). TOGA COARE is an international field experiment in which a large number of research scientists from the Goddard Laboratory for Atmospheres (Code 910) and the Laboratory for Hydrospheres (Code 970) participated. Two high-amplitude intraseasonal (30-60 day) oscillations passed through the TOGA COARE observational network located in the equatorial western Pacific. Associated with the oscillations were two 6-10 day periods of persistent westerly surface winds at the equator or 'westerly wind bursts.' These events are depicted through time series and time-longitude cross sections of divergence/velocity potential, surface winds, precipitation, ocean mixed-layer depth, and sea surface temperature. The high and low frequency components of the flow in which the intraseasonal oscillations were embedded are shown using seasonal, monthly, and 5-day averages of the surface, 850 and 200 mb winds, precipitation, and sea-level pressure, and a time-longitude cross section of tropical cyclone activity. Independent verification of precipitation comes from near real-time satellite estimates, and a reference climatology is given based on 9 years of ECMWF analyses. Daily 00 UTC analyses of surface winds and sea-level pressure for the entire western Pacific and Indian Ocean are provided to trace the evolution of individual synoptic events.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-104593 , REPT-94B00015 , NAS 1.15:104593 , AD-A274627
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional scale model (with grid size of 20 km) and Goddard Cumulus Ensemble (GCE) model (with 1 km grid size) are used to perform multi-day integration to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during SCSMEX Sensitivity tests on various land surface models, sea surface temperature (SST) variations, and cloud processes are performed to understand the precipitation processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. Cloud processes can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. The GCE-model results captured many observed precipitation characteristics because it used a fine grid size. For example, the model simulated rainfall temporal variation compared quite well to the sounding-estimated rainfall. The results show there are more latent heat fluxes prior to the onset of the monsoon. However, more rainfall was simulated after the onset of the monsoon. This modeling study indicates the latent heat fluxes (or evaporation) have more of an impact on precipitation processes and rainfall in the regional climate model simulations than in the cloud-resolving model simulations. Research is underway to determine if the difference in the grid sizes or the moist processes used in these two models is responsible for the differing influence of surface fluxes an precipitation processes.
    Keywords: Environment Pollution
    Type: National Central University; Jun 01, 2002 - Jun 09, 2002; Chung-Li; Taiwan, Province of China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: A recent version of the GEOS 2 GCM was used to isolate the roles of the annual cycles of solar irradiation and/or sea-surface temperatures (SSTs) on the simulated circulation and rainfall. Four 4-year long integrations were generated with the GCM. The first integration, called Control Case, used daily-interpolated SSTs from a 30 year monthly SST climatology that was obtained from the analyzed SST-data, while the solar irradiation at the top of the atmosphere was calculated normally at hourly intervals. The next two cases prescribed the SSTs or the incoming solar irradiance at the top of the atmosphere at their annual mean values, respectively while everything else was kept the same as in the Control Case. In this way the influence of the annual cycles of both external forcings was isolated.
    Keywords: Environment Pollution
    Type: Monsoon Conference; Mar 18, 2001 - Mar 23, 2001; New Delhi, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea, during the monsoon season, from May 6 to May 20, 1986. The model results captured several dominant observed features, such as twin cyclones, a depression system over the Bay of Bengal, strong south-westerly winds over IndoChina before and during the on-set of convection over the SCS, and a vortex over the SCS. Two additional MM5 runs with different land process models, Blackadar and MRF, were performed, and their results are compared to the run with PLACE. The preliminary results indicate that the MM5 results using PLACE and Blackadar are in very good agreement, but the results using MRF do not contain the south-westerly wind over IndoChina prior to the on-set of convection over the SCS.
    Keywords: Environment Pollution
    Type: South China Sea Monsoon Experiment (SCSMEX) 1997-1998; Jun 01, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...