ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.
    Keywords: Geosciences (General)
    Type: American Geophysical Union and Large Scale Biosphere-Atmosphere Experiment in Amazonia; Dec 07, 2002 - Dec 13, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: The general purpose of this research was to improve and update (to 1990) estimates of the net flux of carbon between the world's terrestrial ecosystems and the atmosphere from changes in land use (e.g., deforestation and reforestation). The estimates are important for understanding the global carbon cycle, and for predicting future concentrations of atmospheric CO2 that will result from emissions. The emphasis of the first year's research was on the northern temperate zone and boreal forests, where the greatest discrepancy exists between estimates of flux. Forest inventories suggest net sinks of 0.6 PgC/yr; inversion analyses based on atmospheric data and models suggest much larger sinks 2-3.6 PgC/yr (e.g., Tans et al. 1990, Ciais et al. 1995). The work carried out with this grant calculated the flux attributable to changes in land use. The estimated flux was somewhat smaller than the flux calculated from inventory data suggesting that environmental changes have led to a small accumulation of carbon in forests that exceeds the accumulation expected from past rates of harvest. Two publications have described these results (Houghton 1996, 1998). The large difference between these estimates and those obtained with atmospheric data and models remains unexplained. The recent estimate of a 1.7 PgC/yr sink in North America, alone (Fan et al. 1998), is particularly difficult to explain. That part of the sink attributable to land-use change, however, is defined as a result of this grant.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: This work has been carried out in a period of great changes in Russia that have brought extreme hardships to the scientific community. We have been fortunate in establishing excellent relationships with the Russian scientific community and believe we have helped to retain coherence in circumstances where the continuation of research was in doubt. We have learned much and have been effective in advancing, even establishing, scholars and programs in Russia that might not otherwise have survived the transition. The vigor of the International Boreal Forest Research Association (IBFRA) is one sign of the value and success of these activities. Largely due to the current political and economic transitions in the former Soviet Union, the forests of much of the FSU are under reduced logging pressure. In addition, there is a decline in air pollution as heavy industry has waned, at least for now. Russian forestry statistics and our personal experience indicate a decline, perhaps as high as 60%, in forest harvesting over the last few years. But, new international market pressures on the forests exist in European Russia and in the Far East. The central government, still the "owner" of Russian forests, is having difficulty maintaining control over forest use and management particularly in the Far East and among the southern territories that have large, nonRussian ethnic populations. Extraordinarily large areas of mixed forest and grasslands, sparse or open forests, and mixed forests and tundra must be considered when calculating forest area It is insufficient to think of Russia as simply forest and nonforest Forest productivity, measured as growth of timber, appears to be in decline in all areas of Russia except in European Russia. Most information and publications on the recent history of these forests is heavily dependent on statistical data from the Soviet era. The interpretation of these data is very much open to debate. Anatoly Shwidenko, a long term collaborator and former senior scientist (mensuration) for the Soviet Committee on Forests, now a scholar at the International Institute of Applied Systems Analysis (IIASA), Vienna, has provided abundant contributions from the data available to him and from his experience. Forest stand carbon is concentrated in the Russian Far East (i.e. Primorski Kray), Central-Southern Siberia and European Russia But, soil carbon can be 10 times forest stand C. Our efforts in mapping the area and changes in area (as well as the internal structure) of forests have made major contributions to our joint understanding of the scale and status of these forests. To realize the importance of this contribution one needs only to recognize that any large scale Soviet-era maps of the area did not include latitude and longitude. Even today, there is great reluctance to provide these data, the basis of any GIS.
    Keywords: Environment Pollution
    Type: NASA/CR-97-206109 , NAS 1.26:206109
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: The general purpose of this research was to use recent satellite-based estimates of deforestation in Brazilian Amazonia to calculate the net flux of carbon associated with deforestation and subsequent regrowth of secondary forests. We have made such a calculation, in the process comparing two estimates of deforestation and two estimates of biomass for the region. Both estimates were based on the RADAMBRASIL survey. They differed in the equations used to convert wood-volumes to total biomass. The net flux of carbon from changes in land use seems to vary from year to year, perhaps by as much as a factor of 4.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.
    Keywords: Environment Pollution
    Type: Global Change Biology; 7; 731-746
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...