ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The solar cycle (SC) effect in the lower atmosphere has been linked observationally to the quasi-biennial oscillation (QBO) of the zonal circulation. Salby and Callaghan (2000) in particular analyzed the QBO covering more than 40 years and found that it contains a large SC signature at 20 km. We discuss a 3D study in which we simulate the QBO under the influence of the SC. For a SC period of 10 years, the relative amplitude of radiative forcing is taken to vary with height: 0.2% (surface), 2% (50 km), 20% (100 km and above). This model produces in the lower stratosphere a relatively large modulation of the QBO, which appears to come from the SC and qualitatively agrees with the observations. The modulation of the QBO, with constant phase relative to the SC, is shown to persist at least for 50 years, and it is induced by a SC modulated annual oscillation that is hemispherically symmetric and confined to low latitudes.
    Keywords: Solar Physics
    Type: Geophysical Research Letters; Volume 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. A sounding rocket payload is being developed to test the feasibility of magnetic field measurements in the Sun s transition region. This paper will review the scientific measurements that will be made by the SUMI sounding rocket program, and the optics have been optimized for simultaneous measurements of two magnetic lines formed in the transition region (CIV at 1550 A and MgII at 2800 A). Finally, this paper will concentrate on the polarization properties of the SUM1 polarimeter and toroidal varied-line-space gratings.
    Keywords: Solar Physics
    Type: SPIE Optics and Photonics; Jul 31, 2005 - Aug 04, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Measurements of CH2O from a tunable diode laser absorption spectrometer (TDLAS) were acquired onboard the NASA DC-8 during the summer 2004 INTEX-NA (Intercontinental Chemical Transport Experiment - North America) campaign to test our understanding of convection and production mechanisms in the upper troposphere (UT, 6-12-km) over continental North America and the North Atlantic Ocean. Point-by-point comparisons with box model calculations, when MHP (CH3OOH) measurements were available for model constraint, resulted in a median CH2O measurement/model ratio of 0.91 in the UT. Multiple tracers were used to arrive at a set of UT CH2O background and perturbed air mass periods, and 46% of the TDLAS measurements fell within the latter category. At least 66% to 73% of these elevated UT observations were caused by enhanced production from CH2O precursors rather than direct transport of CH2O from the boundary layer. This distinction is important, since the effects from the former can last for over a week or more compared to one day or less in the case of convective transport of CH2O itself. In general, production of CH2O from CH4 was found to be the dominant source term, even in perturbed air masses. This was followed by production from MHP, methanol, PAN type compounds, and ketones, in descending order of their contribution. In the presence of elevated NO from lightning and potentially from the stratosphere, there was a definite trend in the CH2O discrepancy, which for the highest NO mixing ratios produced a median CH2O measurement/model ratio of 3.9 in the 10-12-km range. Discrepancies in CH2O and HO2 in the UT with NO were highly correlated and this provided further information as to the possible mechanism(s) responsible. These discrepancies with NO are consistent with additional production sources of both gases involving CH3O2 + NO reactions, most likely caused by unmeasured hydrocarbons.
    Keywords: Environment Pollution
    Type: LF99-5463
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: We analyze aircraft observations obtained during INTEX-A (1 July 14 - August 2004) to examine the summertime influence of Asian pollution in the free troposphere over North America. By applying correlation analysis and Principal Component Analysis (PCA) to the observations between 6-12 km, we find dominant influences from recent convection and lightning (13 percent of observations), Asia (7 percent), the lower stratosphere (7 percent), and boreal forest fires (2 percent), with the remaining 71 percent assigned to background. Asian airmasses are marked by high levels of CO, O3, HCN, PAN, acetylene, benzene, methanol, and SO4(2-). The partitioning of reactive nitrogen species in the Asian plumes is dominated by peroxyacetyl nitrate (PAN) (approximately 600 pptv), with varying NO(x)/HNO3 ratios in individual plumes consistent with different plumes ages ranging from 3 to 9 days. Export of Asian pollution in warm conveyor belts of mid-latitude cyclones, deep convection, and lifting in typhoons all contributed to the five major Asian pollution plumes. Compared to past measurement campaigns of Asian outflow during spring, INTEX-A observations display unique characteristics: lower levels of anthropogenic pollutants (CO, propane, ethane, benzene) due to their shorter summer lifetimes; higher levels of biogenic tracers (methanol and acetone) because of a more active biosphere; as well as higher levels of PAN, NO(x), HNO3, and O3 (more active photochemistry possibly enhanced by injection of lightning NO(x)). The high delta O3/delta CO ratio (0.76 mol mol(exp -1)) of Asian plumes during INTEX-A is due to a combination of strong photochemical production and mixing with stratospheric air along isentropic surfaces. The GEOS-Chem global chemical transport model captures the timing and location of the Asian plumes remarkably well. However, it significantly underestimates the magnitude of the enhancements.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.
    Keywords: Solar Physics
    Type: American Geophysical Union Conference; Dec 11, 2008 - Dec 20, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...