ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cybernetics, Artificial Intelligence and Robotics  (1)
  • Environment Pollution; Geophysics; Earth Resources and Remote Sensing  (1)
  • 1
    Publication Date: 2019-07-13
    Description: High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January-February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 kilometers) at 6-8 different sites in each of the urban areas. In this study, we used structure function analysis, which is a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO2 in the 0-2 kilometers range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission to measure near-surface CO2 variability in different urban areas. We also compare the observed in-situ CO2 variability with the variability of the CO2 column-averaged optical depths in the 0-1 kilometer and 0-3.5 kilometers altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO2 sensors operating in the 1.57 and 2.05 millimeter measurement regions. In addition to determining the natural variability of CO2 near the surface and in the column, radiocarbon method using continuous CO2 and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.
    Keywords: Environment Pollution; Geophysics; Earth Resources and Remote Sensing
    Type: NF1676L-22200 , Fall Meeting AGU 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: NF1676L-10529 , 25th International Laser Radar Conference; Jul 05, 2010 - Jul 09, 2010; Saint Petersburg; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...