ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 24 (1997), S. 347-352 
    ISSN: 1432-0789
    Schlagwort(e): Key words Phosphate-solubilizing bacteria ; Hydroxyapatite ; Enterobacter agglomerans ; Organic acids ; Phosphate-solubilizing genes ; Rhizosphere ; Wheat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Phosphate-solubilizing bacteria (PSB) possessing the ability to solubilize insoluble inorganic phosphate were isolated from the rhizosphere soil of wheat. A laboratory study was conducted to investigate the solubilization of phosphate by a known PSB, Enterobacter agglomerans, and by a genetically manipulated bacterium, Escherichia coli. A second laboratory study investigated the release of P from E. agglomerans compared with known acids. For the first laboratory study, a cosmid (pHC79) library of phosphate-solubilizing gene(s) from E. agglomerans chromosome DNA was constructed in E. coli JM109. The clone JM109 (pKKY) showing phosphate solubilization properties was screened on standard medium containing hydroxyapatite (HY). The P concentration significantly increased at 5 and 10 days for JM109 (pKKY) compared with JM109 (pHC79), the control. Although the P concentration increased, there was no significant change in their pHs. Furthermore, an increase in colony-forming units (CFUs) was seen at 5 and 10 days for JM109 (pKKY) but not for JM109 (pHC79). Artificial acidification of the culture medium with HCl, citric acid, oxalic acid, and lactic acid was achieved by shaking for 48h. Acidification with these selected acids solubilized more HY than E. agglomerans growing for 42h at similar pHs. However, a high P concentration was measured in culture medium with E. agglomerans growing for 84h despite similar pHs. Our results suggest that acid production may play an important role in HY solubilization, but is not the sole reason for the increase in P concentration in culture medium.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 26 (1997), S. 79-87 
    ISSN: 1432-0789
    Schlagwort(e): Key words Organic acids ; Phosphate-solubilizing ; bacteria ; Vesicular-arbuscular mycorrhizae ; Glomus etunicatum ; Enterobacter agglomerans
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract The interaction of vesicular-arbuscular mycorrhizae (VAM) and phosphate-solubilizing bacteria (PSB) on plant growth, soil microbial activities, and the production of organic acids was studied in non-sterile soil containing hydroxyapatite and glucose. Glomus etunicatum (VAM), a fungus, and Enterobacter agglomerans, a bacterium able to solubilize insoluble phosphate, were used as inocula. Three treatments and a control were used: inoculation with E. agglomerans (treatment E), inoculation with G. etunicatum (treatment G), inoculation with E. agglomerans+G. etunicatum (treatment E+G) and the control (C). Inoculation with E, G, or E+G had increased plant growth by days 35, 55, and 75 compared with the control. Microbial biomass carbon (C) and alkaline phosphatase activity in the rhizosphere generally increased with time. Alkaline phosphatase activity was higher in treatments G and E+G compared with the control at 35 and 55 days. The highest acid phosphatase activity was observed in treatment E at 35 days; however, this markedly decreased with time. A significantly higher soluble phosphorus (P) concentration was observed in treatments E and E+G on day 55 compared with C. However, there was no significant difference in soluble P concentration in the rhizosphere between treatments with time. The P concentration was greatest in all treatments on day 55. The highest oxalic acid concentration was observed in the rhizosphere of the non-sterile soil in E+G on day 35. Total N and P uptake in plants from treatments E and G were higher compared with the control. However, the highest N and P uptake was observed in treatment E+G. This study suggests a synergistic interaction between E. agglomerans and G. etunicatum.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...