ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 14 (1990), S. 1-26 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: A number of variational principles are established in this paper for the stress analysis of porous media with compressible constituents. A three-dimensional finite element method is proposed based on the variational principle. The finite element method thus established is applied to the study of the temperature, deformation and flow field associated with the water-flood technique in secondary recovery projects for oil exploration. In the study model, the layout of injection wells and production wells is considered to have a regular pattern where symmetry conditions exist. The injection fluid diffuses slowly into the formation through a vertical crack which is initially generated by an explosion. The problem is analysed by a plane strain formulation with the effects of heat conduction and convection included.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 187-198 
    ISSN: 0271-2091
    Keywords: Three-dimensional ; Finite element ; Free surface flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An efficient semi-implicit finite element model is proposed for the simulation of three-dimensional flows in stratified seas. The body of water is divided into a number of layers and the two horizontal momentum equations for each layer of water are first integrated vertically. Nine-node Lagrangian quadratic isoparametric elements are employed for spatial discretization in the horizontal domain. The time derivatives are approximated using a second-order-accurate semi-implicit time-stepping scheme. The distinguishing feature of the proposed numerical scheme is that only nodal values on the same vertical line are coupled. Two test cases for which analytic solutions are available are employed to test the proposed scheme. The test results show that the scheme is efficient and stable. A numerical experiment is also included to compare the proposed scheme with a finite difference scheme.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 545-569 
    ISSN: 0271-2091
    Keywords: Oil recovery ; Porous medium ; Conductive fracture ; Finite element method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In the technology of oil recovery the oil production rate can be increased by generation of a vertical sand-filld conductive fracture on the wall of the well. Oil diffuses through the conductive fracture to the well. In this paper the seepage flow and isothermal deformation fields in both the formation and fracture and the oil production rate at the well are studied by modelling the formation as an infinite poroelastic medium saturated with a one-phase compressible fluid. The fracture is treated as a one-dimensional poroelastic medium. Darcy flows are considered in both the formation and fracture. The plane strain condition is imposed. Our solution is obtained numerically by a finite element method based on a variational principle. The accuracy of the analysis is studied by comparison of the numerical solutions of some problems with their analytical solutions. Since we are dealing with the transient flow problem of an infinite region, an extrapolation technique is employed to find the finite element solution. The production rate of a well with the conductive fracture is compared with that of a well without the conductive fracture.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 17 (1981), S. 853-870 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The stability of plane Poiseuille flow and circular Couette flow are examined with respect to linear azimuthally periodic disturbances by the finite element method. In the case of Couette motion, solutions are obtained for a narrow gap, a wide gap and a dilute polymer solution with an elongational viscosity in the narrow gap limit when both cylinders rotate at almost equal speed in the same direction. Results are in good agreement with previous calculations by other numerical methods.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...