ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: A debris exclusion and removal apparatus for connectors which have a dual-poppet value configuration containing a pressurized substance. Coupling of the female and male connectors causes the poppet valve to eject a cleaning substance which will eliminate debris from the male connector prior to mating with the female connector.
    Keywords: Engineering (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-12
    Description: The American Concrete Institution (ACI) Universidad de Cuenca Chapter, from Ecuador, is pleased to inform you that Mr. Rob Mueller, Director of Swamp Works, is invited to our academic event named II International Symposium of Cement and Concrete Technology. The dates of the event are from the 8th to 9th of October 2019 in the Carlos Cueva Tamariz Theater, Cuenca - Ecuador. This event is part of the commencement of the 80 years of institutional life of the Faculty of Engineering and is ideal opportunity to establish connections with the industry and academia.During this experience Senior Technologist Rob Mueller will have the opportunity to speak in two 45 min sessions about The Swamp Works. Topic: The rapid, innovative, and cost-effective exploration mission solutions of NASA.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN73485 , I International Symposium of Cement and Concrete Technology; Oct 08, 2019 - Oct 09, 2019; Cuenca; Ecuador
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: CLASS node of SSERVI at FSI, The Technology and Future of In-Situ Resource Utilization (ISRU): ACapstone Graduate Seminar Orlando, FL. This seminar will discuss the use of regolith and robotics in extra terrestrialconstruction.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN39805 , The Technology and Future of In-Situ Resource Utilization (ISRU): A Capstone Graduate Seminar; Mar 06, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-06
    Description: NASA's Centennial Challenges program uses prize competitions with the goal of accelerating innovation in the aerospace industry. Competitions in the Centennial Challenges portfolio have previously focused on advancements in space robotics, regolith excavation, bio-printing, astronaut suit design, small satellites, and solar-powered vehicles. NASA's Three Dimensional (3D) Printed Habitat Centennial Challenge represents a partnership between NASA and the non-profit partner: Bradley University, with co-sponsors Caterpillar, Bechtel, Brick and Mortar Ventures, the American Concrete Institute, and the United States Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC) to spur development in automated additive construction technologies. The challenge asks teams to design and construct a scaled and simulated Martian habitat using indigenous materials and large scale 3D automated printing systems. Phase 1 of the competition, held in 2015, was an architectural design competition for habitat concepts that could be 3D printed. Phase 2, completed in 2017, asked teams to develop feedstocks from indigenous materials and hydrocarbon polymer recyclables, and demonstrate automated printing systems to manufacture these feedstocks into test specimens to assess mechanical strength. This paper will discuss the Phase 3 competition, focusing on technology outcomes that can potentially be infused into both terrestrial and planetary construction applications. The Phase 3 competition was divided into two sub-competitions: 1) virtual construction, where teams created a high fidelity building information model (BIM) of their 3D-printed habitat design and 2) the construction competition, which required teams to 3D print a structural foundation and subject materials samples to freeze/thaw testing and impact testing (level 1), produce a habitat element and complete a hydrostatic test (level 2), and additively manufacture a 1:3 scale habitat onsite in a head to head competition at Caterpillar, inc.'s Edwards Demonstration & Learning Center near Peoria, Illinois over the course of three days (level 3). While the Phase 2 competition focused primarily on the development of novel feedstocks and robotic printing systems, Phase 3 emphasized the scale-up of these systems and autonomous operation (demonstrating the capability to operate systems on precursor missions prior to the arrival of crew, or terrestrially in field operation settings where human tending of a manufacturing system may be limited). The Phase 3 virtual construction levels yielded a number of novel habitat designs, including both modular habitats and vertically-oriented habitat concepts. The Phase 3 construction competition also challenged teams to autonomously place penetrations and interfacing elements in additively manufactured structures. The paper will emphasize potential applications for the new materials and technologies developed under the umbrella of the competition within NASA's portfolio and in Earth-based applications such as disaster response and infrastructure improvement.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN74188 , International Astronautical Congress (IAC) 2019; Oct 21, 2019 - Oct 25, 2019; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: High launch costs and mission requirements drive the need for low mass excavators with mobility platforms, which in turn have little traction and excavation reaction capacity in low gravity environments. This presents the need for precursor and long term future missions with low mass robotic mining technology to perform In-Situ Resource Utilization (ISRU) tasks. This paper discusses a series of experiments that investigate the effectiveness of a percussive digging device to reduce excavation loads and thereby the mass of the excavator itself. The goal of percussive excavation is to fluidize dry regolith in front of the leading edge of the tool by mechanically separating the microscopic interlocking grains resulting in a reduced force needed to shear the soil. There are several variables involved with this technique; this experiment varied: Impact energy, frequency, and excavation speed and held constant: impact direction, depth of cut, angle of tool, and soil bulk density. The test apparatus consisted of an aluminum truss bridge with a central pivoting arm. Attached to the arm was a winch with a load cell in line that recorded the tension in the cable and therefore the excavation load. The arm could be adjusted for excavation depth which was recorded along with the arm angle relative to the bridge. A percussive mechanism and 30" wide pivoting bucket were attached at the end of the arm simulating a basic backhoe with a percussion direction tangent to the direction of . movement. Internally the mechanism used a set of die springs and barrel cam to produce the percussive blow. By changing the springs and the speed of the motor the impact energy and frequency of percussion could be varied independently. Impact energies from 11.2J to 30.5J and frequencies from 0 BPM to 700 BPM were investigated. A reduction in excavation force of as much as 51% was achieved in this experimental investigation. Smaller percussive digging implements, tested by others, have achieved a reduction of as much as 72%. This paper will examine the effects of impact energy, frequency, scaling and their effect on excavation forces in a dry granular material such as lunar regolith. The past several years have shown an increasing interest in mining space resources both for exploration and commercial enterprises. This work studied the benefits and risks of percussive excavation and prelimin~ry results indicate that this technique may become an enabling technology for extra-terrestrial excavation of regolith and ice.
    Keywords: Engineering (General)
    Type: KSC-2012-205 , IEEE Aerospace Conference; Mar 02, 2013 - Mar 09, 2013; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...