ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 269-286 
    ISSN: 0271-2091
    Keywords: Unsteady ; Navier-Stokes ; Domain decomposition ; Schwarz ; QUICK ; Multigrid ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes a domain decomposition numerical procedure for solving the Navier-Stokes equations in regions with complex geometries. The numerical method includes a modified version of QUICK (quadratic upstream interpolation convective kinematics) for the formulation of convective terms and a central difference scheme for the diffusion terms. A second-order-accurate predictor-corrector scheme is employed for the explicit time stepping. Although the momentum equations are solved independently on each subdomain, the pressure field is computed simultaneously on the entire flow field. A multigrid technique coupled with a Schwarz-like iteration method is devised to solve the pressure equation over the composite domains. The success of this strategy depends crucially on appropriate methods for specifying intergrid pressure boundary conditions on subdomains. A proper method for exchanging information among subdomains during the Schwarz sweep is equally important to the success of the multigrid solution for the overall pressure field. These methods are described and subsequently applied to two forced convection flow problems involving complex geometries to demonstrate the power and versatility of the technique. The resulting pressure and velocity fields exhibit excellent global consistency. The ability to simulate complex flow fields with this method provides a powerful tool for analysis and prediction of mixing and transport phenomenon.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 341-361 
    ISSN: 0271-2091
    Keywords: Navier-Stokes ; unsteady ; composite multigrid ; incompressible ; non-staggered grid ; semi-implicit ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A time-accurate, finite volume method for solving the three-dimensional, incompressible Navier-Stokes equations on a composite grid with arbitrary subgrid overlapping is presented. The governing equations are written in a non-orthogonal curvilinear co-ordinate system and are discretized on a non-staggered grid. A semi-implicit, fractional step method with approximate factorization is employed for time advancement. Multigrid combined with intergrid iteration is used to solve the pressure Poisson equation. Inter-grid communication is facilitated by an iterative boundary velocity scheme which ensures that the governing equations are well-posed on each subdomain. Mass conservation on each subdomain is preserved by using a mass imbalance correction scheme which is secondorder-accurate. Three test cases are used to demonstrate the method's consistency, accuracy and efficiency.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...