ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/1988 | 130 | 2011-09-29 19:50:30 | 1988 | University of Maryland Center for Environmental Science. Chesapeake Biological Laboratory
    Publication Date: 2021-07-11
    Description: Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear(as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field.
    Description: UMCES - CBL
    Description: UMCES(University of Maryland Center for Environmental Science. Contribution no. 666
    Keywords: Management ; Fisheries ; Engineering ; Striped Bass ; White Perch ; Shear
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 149-154
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 99-104 
    ISSN: 0271-2091
    Keywords: Finite Element Method ; Shallow Water Equations ; Boundary Conditions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 603-618 
    ISSN: 0271-2091
    Keywords: shallow water equations ; wave continuity equation ; boundary conditions ; finite elements ; generalized functions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Finite element solution of the shallow water wave equations has found increasing use by researchers and practitioners in the modelling of oceans and coastal areas. Wave equation models, most of which use equal-orderC0 interpolants for both the velocity and the surface elevation, do not introduce spurious oscillation modes, hence avoiding the need for artificial or numerical damping. An important question for both primitive equation and wave equation models is the interpretation of boundary conditions. Analysis of the characteristics of the governing equations shows that for most geophysical flows a single condition at each boundary is sufficient, yet there is not a consensus in the literature as to what that boundary condition must be or how it should be implemented in a finite element code. Traditionally (partly because of limited data), surface elevation is specified at open ocean boundaries while the normal flux is specified as zero at land boundaries. In most finite element wave equation models both of these boundary conditions are implemented as essential conditions. Our recent work focuses on alternative ways to numerically implement normal flow boundary conditions with an eye towards improving the mass-conserving properties of wave equation models. A unique finite element formulation using generalized functions demonstrates that boundary conditions should be implemented by treating normal fluxes as natural conditions with the flux interpreted as external to the computational domain. Results from extensive numerical experiments show that the scheme does conserve mass for all parameter values. Furthermore, convergence studies demonstrate that the algorithm is consistent, as residual errors at the boundary diminish as the grid is refined.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 779-802 
    ISSN: 0271-2091
    Keywords: finite element method ; vertical velocity ; three-dimensional ; Vancouver Island ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Computation of vertical velocity within the confines of a three-dimensional, finite element model is a difficult but important task. This paper examines four approaches to the solution of the overdetermined system of equations arising when the first-order continuity equation is solved in conjunction with two boundary conditions. The traditional (TRAD) method neglects one boundary condition, solving the continuity equation with the remaining boundary condition. The vertical derivative of continuity (VDC) method involves solution of the second-order equation obtained by differentiation of the continuity equation with respect to the vertical co-ordinate. The least squares (LS) method minimizes the residuals of the continuity equation (in discrete form) and the two boundary conditions. The adjoint (ADJ) method minimizes the residuals of the continuity equation (in continuous form) and the two boundary conditions.Two domains are considered: a quarter-annular harbour and the southwest coast of Vancouver Island. Results indicate that the highest-quality solution is obtained with both LS and ADJ. Furthermore, ADJ requires less CPU and memory than LS. Therefore the optimal method for computation of vertical velocity in a three-dimensional finite element model is the adjoint (ADJ) method. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 10 (1976), S. 893-923 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The integral equations which arise from application of the Galerkin-finite element scheme to the convective diffusion equation are examined to illustrate how this method represents differential equations. The formulae obtained are effectively spatial averages of standard finite difference equations written at a node. The truncation error in the finite element solution at a node is obtained for various nodal configurations.
    Additional Material: 9 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 11 (1977), S. 1893-1897 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 12 (1978), S. 387-404 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In the last decade or so finite element techniques have been applied with increased frequency to contaminant transport problems. Whereas most of the attention has focused on finite element approximations of spatial derivatives, standard finite difference techniques are generally used for approximation of the time derivative. Such an approach yields a scheme which is at best second order correct in time. In this study several higher order approximations of the time derivative are developed and analyzed using a finite difference approximation, and Galerkin-type finite element approximations in conjunction with several sets of basis functions. Results obtained with the different schemes exhibit significant improvements in the numerical solution of the convective-dispersive equation.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 451-458 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A general non-linear interpolation procedure for contouring on any isoparametric surface was presented in a previous article. The method used standard isoparametric interpolation functions and a predictor method for tracing element contour lines. The method presented here extends the previous work by using a predictor-corrector method to trace element contour lines, thereby making the contouring algorithm more accurate.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 23 (1986), S. 1529-1545 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A modified isoparametric co-ordinate transformation is developed for the case of Lagrange cubic finite elements. This modified transformation produces significant improvements in solution accuracy while eliminating troublesome aspects of the standard isoparametric mapping. In particular, zero Jacobians in the standard transformation, which can occur in elements having non-uniform node spacing, are completely eliminated with the new transformation. Within the analysis, the range of node locations for which the standard transformation is valid (the Jacobian does not vanish) is determined. The treatment of curved sides is discussed and illustrated. Example calculations using two-dimensional serendipity elements show that the new transformation provides solutions that are as much as several orders of magnitude more accurate than those computed using the standard formulation.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: An efficient hypersingular boundary integral equation method for three-dimensional fracture mechanics was presented in a previous paper. The details of the numerical implementation of this method are further discussed herein. In particular, an algorithm for achieving the required differentiability of the crack surface displacement function is discussed. To illustrate the utility of the method, computational results for several strongly interacting multiple-crack geometries are presented. The calculated stress intensity factors are in excellent agreement with those obtained by an approximate analytical method due to Kachanov and Laures.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...