ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • Electronics and Electrical Engineering  (3)
  • Nonmetallic Materials  (3)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies such as Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (1015 - 1017 H+/cm2 doses) irradiated chemical vapor deposited (CVD) diamond reveals that the microstructure is retained even after high radiation exposure.
    Keywords: Nonmetallic Materials
    Type: AMPET; Sep 16, 2002 - Sep 18, 2002; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Due to its many excellent properties, diamond is being explored as a material for MicroElectroMechanical Systems (MEMS). However, as is true in the case of silicon, a large amount of basic material characterization issues still warrant investigation. This paper presents preliminary results from charged particle irradiation of Chemical Vapor Deposited (CVD) polycrystalline diamond films. The films were simultaneously dosed to a level of 9.4 x l0(exp 13)/sq cm using 700 keV protons and 1 MeV electrons. The samples were then subject to cross-sectional nanoindention analysis and Raman spectroscopy. Polycrystalline silicon was also investigated for comparison purposes. The diamond was unaffected by the irradiation. However, the silicon did indicate a slight decrease in the Young's Modulus.
    Keywords: Nonmetallic Materials
    Type: ASTM Conference; Nov 15, 2000 - Nov 15, 2000; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The dimensional stability of polychlorotrifluoroethylene (PCTFE) valve seats used in oxygen regulator applications was determined by thermomechanical analysis (TMA). Two traceable grades of PCTFE were tested; Kel-F 81 and Neoflon CTFE M400H. For these particular resins, the effect of percent crystallinity, zero strength time (ZST) molecular weight, resin grade, process history (compression-molded versus extruded) on the dimensional stability and annealing behavior was determined. In addition to the traceable Kel-F 81 and Neoflon CTFE M400H grades, actual PCI'PH valve seats of differing geometry and design were tested by TMA. The PCTFE valve seats were of unspecified resin grade, although certain inferences about the grade could be drawn based on knowledge of the valve seat fabrication date. Results consistently revealed dimensional instability of varying magnitude at temperatures ranging from 40 to 70 degrees Celsius. Furthermore, some of the pre- 1 995 seats appeared to be more dimensionally stable than those fabricated after 1995. The TMA results are discussed in the context of several proposed ignition mechanisms; namely, particle impact, presence of contaminant oils and fibers, and localized heating by flow friction and/or resonance. The effect of metal constraint on the dimensional stability of PCTFE is also discussed. Finally, the effect of percent crystallinity, ZST molecular weight, resin grade, process history (compression-molded versus extruded) on the AIT, delta Hc and impact sensitivity of various types of Neoflon CTFE M400H was determined using Kel-F 81 as a control. Results show that the AIT, delta Hc and impact sensitivity were essentially independent of Neoflon CTFE process history and structure.
    Keywords: Nonmetallic Materials
    Type: 9th International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Sep 28, 2000 - Sep 29, 2000; Paris,; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The development of rotary and linear inchworm-motors using piezoelectric actuators is presented. The motors' design has the advantage of a macro and micro stepper motor with high load and speed. The torsional design is capable of fast angular positioning with micro level accuracy. Additionally, the rotary motor, as designed, can be used as a clutch/brake mechanism. Constructed prototype motors of both types along with their characteristics are presented. The torsional motor consists of a torsional section that provides angular displacement and torque, and two alternating clamping sections which provide the holding force. The motor relies on the principal piezoelectric coupling coefficient (d33) with no torsional elements, increasing its torque capability. The linear motor consists of a longitudinal vibrator that provides displacement and load, and two alternating clamping sections which provide the holding force. This design eliminates bending moment, tension and shear applied to the actuator elements, increase its load capability and life. Innovative flexure designs have been introduced for both motor types. Critical issues that affect the design and performance of the motors are explored and discussed. Experiments are performed demonstrating the motor prototypes based on the aforementioned design considerations.
    Keywords: Electronics and Electrical Engineering
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 373; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The objective of this investigation was to examine the relationship between irradiation level (proton dose), microstructure, and stress levels in chemical vapor deposited diamond and polysilicon film using crosssectioned specimens. However, the emphasis was placed on the diamond specimen because diamond holds much promise for use in advanced technologies. The use of protons allows not only the study of the charged particle that may cause the most microstructural damage in Earth-orbit microelectromechanical systems (MEMS) devices, but also allows the study of relatively deeply buried damage inside the diamond material. Using protons allows these studies without having to resort to megaelectronvolt implant energies that may create extensive damage due to the high energy that is needed for the implantation process. Since 1 MEMS devices operating in space will not have an opportunity to reverse radiation damage via annealing, only nonannealed specimens were investigated. The following three high spatial resolution techniques were used to examine these relationships: (I) Scanning electron microscopy, (2) micro-Raman spectroscopy, and (3) micro x-ray diffraction.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/TM-2003-212692 , M-1088 , NAS 1.15:212692
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.
    Keywords: Electronics and Electrical Engineering
    Type: NPO-44241 , NASA Tech Briefs, January 2008; 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...