ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 38 (1999), S. 65-72 
    ISSN: 1435-1528
    Keywords: Key words Immiscible blends ; Flow-induced morphology ; Elastic recovery ; Blend rheology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Due to the interfacial tension, immiscible blends can show an elastic recovery that is substantially larger than that of their pure components. Here it is attempted to relate the elastic recovery after steady shear flow to the underlying morphology. On the one hand, the predictions of the Palierne and the Doi-Ohta models are calculated for the flow conditions during recoil. On the other hand, systematic recoil experiments after steady state shearing have been performed on a model blend. As the component polymers hardly show any recoil under the stresses applied in these tests, the measured recovery can be attributed completely to the action of the interface. Comparison of the model predictions with the experimental results shows that the recoverable strain can be derived quantitatively from the linear Palierne theory. Although the droplet deformation remained limited during the preshear, the retardation time predicted by this model has to be multiplied by the aspect ratio of the droplet phase to the power 2/3 to describe the experiments. For conditions in which the material does not show an intrinsic length scale, particular scaling relations as derived from the Doi-Ohta theory are found to apply also to recoil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...