ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ecosystem  (2)
  • Inorganic, Organic and Physical Chemistry  (2)
  • 2000-2004  (4)
  • 1935-1939
  • 2001  (4)
  • 1
    Publication Date: 2001-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, C S -- Lento, G M -- Cipriano, F -- Dalebout, M L -- Palumbi, S R -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1695-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11186388" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Commerce ; *Conservation of Natural Resources ; Ecosystem ; International Cooperation ; Japan ; *Whales
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-06-26
    Description: For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pacala, S W -- Hurtt, G C -- Baker, D -- Peylin, P -- Houghton, R A -- Birdsey, R A -- Heath, L -- Sundquist, E T -- Stallard, R F -- Ciais, P -- Moorcroft, P -- Caspersen, J P -- Shevliakova, E -- Moore, B -- Kohlmaier, G -- Holland, E -- Gloor, M -- Harmon, M E -- Fan, S M -- Sarmiento, J L -- Goodale, C L -- Schimel, D -- Field, C B -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2316-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08544, USA. Pacala@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423659" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; *Atmosphere ; *Carbon/metabolism ; Carbon Dioxide ; Conservation of Natural Resources ; Ecosystem ; Fires ; Forestry ; Soil ; Time Factors ; *Trees/metabolism ; United States ; Wood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: Magnetic fields impact combustion processes in a manner analogous to that of buoyancy, i.e., as a body force. It is well known that in a terrestrial environment buoyancy is one of the principal transport mechanisms associated with diffusion flame behavior. Unfortunately, in a terrestrial environment it is difficult if not impossible to isolate flame behavior due magnetic fields from the behavior associated with buoyancy. A micro-, or reduced, gravity environment is ideally suited for studying the impact of magnetic fields on diffusion flames due to the decreased impact of buoyancy on flame behavior.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 361-364; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-07
    Description: In 1846, Michael Faraday found that permanent magnets could cause candle flames to deform into equatorial disks. He believed that the change in flame shape was caused by the presence of charged particles within the flames interacting with the magnetic fields. Later researchers found that the interaction between the flame ions and the magnetic fields were much too small to cause the flame deflection. Through a force analysis, von Engel and Cozens showed that the change in the flame shape could be attributed to the diamagnetic flame gases in the paramagnetic atmosphere. Paramagnetism occurs in materials composed of atoms with permanent magnetic dipole moments. In the presence of magnetic field gradients, the atoms align with the magnetic field and are drawn into the direction of increasing magnetic field. Diamagnetism occurs when atoms have no net magnetic dipole moment. In the presence of magnetic gradient fields, diamagnetic substances are repelled towards areas of decreasing magnetism. Oxygen is an example of a paramagnetic substance. Nitrogen, carbon monoxide and dioxide, and most hydrocarbon fuels are examples of diamagnetic substances. In order to evaluate the usefulness of these magnets in altering flame behavior, a study has been undertaken to develop an analytical model to describe the change in the flame length of a laminar diffusion jet in the presence of a nonuniform magnetic field.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 381-384; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...