ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Echinosphaerium (Actinosphaerium) nucleofilum  (1)
  • Microspheres  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 305-314 
    ISSN: 0886-1544
    Keywords: cell surface motility ; axopodia ; reticulopodia ; Allogromia ; Echinosphaerium (Actinosphaerium) nucleofilum ; surf-riding ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The mechanism responsible for the energy-dependent movement of membrane components (ie, surface motility) is unknown. Recently a potentially unifying model, termed “surf-riding” [Hewitt, 1979] or “surf-boarding” [Berlin and Oliver, 1982], has been proposed to explain surface motility. Using phase-contrast light microscopy and membrane surface markers (polystyrene microspheres), we have tested the surf-riding/surf-boarding hypothesis on two protozoan systems: the axopodia of the heliozoan Echinosphaerium nucleofilum and the reticulopodial networks of the allogromiid foraminiferans Allogromia laticollaris and Allogromia sp, strain NF. Our evidence indicates that surface motility, as displayed by these organisms, does not occur by a surf-riding/surf-boarding mechanism. Previouś observations on surface motility associated with the Chlamydomonas flagellum indicate that this system is also incompatible with the surf-boarding/surf-riding hypothesis.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Flagella ; Microspheres ; Gliding motility ; Protein dephosphorylation ; Chlamydomonas ; Plasma membrane ; Membrane protein dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The biflagellate green algaChlamydomonas can exhibit substrate-associated gliding motility in addition to its ability to swim through a liquid medium. The flagella are the organelles responsible for both forms of whole-cell locomotion although the mechanism in each case is very different. In this study, we demonstrate that the binding of polystyrene microspheres to the flagellar surface ofChlamydomonas initiates clustering of the major flagellar-membrane glycoprotein, which is known to be involved in motility-associated substrate adhesion. In addition, we demonstrate that microsphere binding to the flagellar surface initiates the same transmembrane signaling pathway that is initiated by antibody- or lectin-induced crosslinking of the major flagellar-membrane glycoprotein. In each case, the signaling pathway involves the activation of a calciumdependent protein phosphatase that dephosphorylates a flagellar phosphoprotein known to be associated with the major flagellar-membrane glycoprotein. Bound microspheres are translocated along the flagellar surface at approximately the same velocity as whole-cell gliding motility. Previous observations suggest that microsphere binding and translocation along the flagellar surface may be a reflection of the same force-transducing system responsible for whole-cell gliding motility. In which case, these observations suggest that the transmembrane signaling pathway initiated by crosslinking the major flagellar-membrane glycoprotein is the same one that is activated when the cell contacts a physiological substrate by its flagellar surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...