ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8411–8420, doi:10.1002/2014GL062256.
    Description: Large, deep-keeled icebergs are ubiquitous in Greenland's outlet glacial fjords. Here we use the movement of these icebergs to quantify flow variability in Sermilik Fjord, southeast Greenland, from the ice mélange through the fjord to the shelf. In the ice mélange, a proglacial mixture of sea ice and icebergs, we find that icebergs consistently track the glacier speed, with slightly faster speeds near terminus and episodic increases due to calving events. In the fjord, icebergs accurately capture synoptic circulation driven by both along-fjord and along-shelf winds. Recirculation and in-/out-fjord variations occur throughout the fjord more frequently than previously reported, suggesting that across-fjord velocity gradients cannot be ignored. Once on the shelf, icebergs move southeastward in the East Greenland Coastal Current, providing wintertime observations of this freshwater pathway.
    Description: Funding for this study was provided by National Science Foundation grants OCE-1130008 and ARC-0909274, and by the University of Oregon.
    Description: 2015-06-11
    Keywords: Icebergs ; Fjord circulation ; Ice mélange ; East Greenland Current ; Greenland ice sheet ; Iceberg melt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: video/quicktime
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 847–855, doi:10.1029/2012JC008354.
    Description: Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We compare depths derived from the seal dives with the IBCAO Version 3 bathymetric database over the shelf and find differences up to 300 m near several large submarine canyons. In the vertical temperature structure, we find two dominant modes: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R = 0.54), but this correlation decreases with depth (R = 0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers.
    Description: Funding for this work came from National Science Foundation OPP grant 0909373 and OCE grant 1130008, plus the WHOI Arctic Research Initiative. The Greenland Institute of Natural Resources and the Department of Fisheries and Oceans, Canada, supported the seal tagging logistics.
    Description: 2013-08-20
    Keywords: East Greenland Current ; Irminger Current ; Bathymetry ; SST ; Ice-ocean interactions ; Marine mammal tagging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 3767–3791, doi:10.1002/2013JC009786.
    Description: The circulation regimes of two major outlet glacial fjords in southeastern Greenland, Sermilik Fjord (SF) and Kangerdlugssuaq Fjord (KF), are investigated using data collected in summer 2009. The two fjords show similar flow patterns, with a time-dependent, vertically sheared flow structure dominating over the background estuarine flow driven by buoyancy input. We show that this time-dependent flow is consistent with circulation induced by density interface fluctuations at the fjord mouth, often referred to as intermediary circulation. One difference between the fjords is that the hydrographic and velocity structure below a surface modified layer is found to be three layer in KF in summer, compared to two layer in SF. Outside each fjord, large-scale geostrophic currents dictate the stratification at the mouth, although the way in which these large-scale flows impinge on each fjord is distinct. Combining the observations with estimates from existing theories, we find the magnitudes of the estuarine (Qe) and intermediary (Qi) circulation and show that Qi 〉〉 Qe, although along-fjord winds can also be significant. We expect that the critical parameter determining Qi/Qe is the sill depth compared to the fjord depth, with shallower sills corresponding to weaker intermediary circulation. Finally, we discuss the implications of strong intermediary circulation on calculating heat transport to the glacier face and its potential feedbacks on the background circulation in these highly stratified estuaries.
    Description: Funding for this work came from National Science Foundation OPP grant 0909373 and OCE grants 1130008 (D.A.S. and F.S.) and 0959381 (R.P.), and the WHOI Arctic Research Initiative (FS).
    Description: 2014-12-16
    Keywords: Greenland ; Fjord circulation ; Estuarine circulation ; Intermediary circulation ; Meltwater ; East Greenland Current ; Atlantic Water ; Glaciers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...