ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2013-08-29
    Description: Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies in polar orbit on the Terra platform, are used to derive the aerosol optical thickness and properties over land and ocean. The relationships between visible reflectance (at blue, rho(sub blue), and red, rho(sub red)) and mid-infrared (at 2.1 microns, rho(sub 2.1)) are used in the MODIS aerosol retrieval algorithm to derive global distribution of aerosols over the land. These relations have been established from a series of measurements indicating that rho(sub blue) is approximately 0.5 rho(sub red) is approximately 0.25 rho(sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. Calculations for a wide range of leaf area indices and vegetation fractions show that rho(sub blue) is consistently about 1/4 of rho(sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho(sub red)/rho(sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation, to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its nine along-track view angles, four visible/near-infrared spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space. The more than 10-year (and counting) MISR data record provides unprecedented opportunities for characterizing long-term trends in aerosol, cloud, and surface properties, and includes 3-D textural information conventionally thought to be accessible only to active sensors.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Geoscience and Remote Sensing Society Conference; Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The in-flight calibration of the EOS Multi-angle Imaging SpectroRadiometer (MISR) will be achieved, in part, by observing deployable Spectralon panels. This material reflects light diffusely, and allows all cameras to view a near constant radiance field. This is particularly true when a panel is illuminated near the surface normal. To meet the challenging MISR calibration requirements, however, very accurate knowledge of the panel reflectance must be known for all utilized angles of illumination, and for all camera and monitoring photodiode view angles. It is believed that model predictions of the panels Bidirectional Reflectance Distribution Function (BRDF) can be used in conjunction with a measurements program to provide the required characterization. This paper describes the results of a model inversion which was conducted using measured Spectralon BRDF data at several illumination angles. Four physical parameters of the material were retrieved, and are available for use with the model to predict reflectance for any arbitrary illumination or view angle. With these data the root mean square difference between the model and the observations is currently of the order of the noise in the data, at about +/- l%. With this success the model will now be used in a variety of future studies, including the development of a measurements test plan, the validation of these data, and the prediction of a new BRDF profile, should the material degrade in space.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA-CR-203693 , NAS 1.26:203693 , SPIE Proceedings Series; 1938; 100-108|Recent Advances in Sensors, Radiometric Calibration, and Processing of Remotely Sensed Data; Apr 14, 1993 - Apr 16, 1993; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...