ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-18
    Description: Cloud droplet number concentration (Nd) is an important parameter of liquid clouds and is crucial to understanding aerosol-cloud interactions. It couples boundary layer aerosol composition, size and concentration with cloud reflectivity. It affects cloud evolution, precipitation, radiative forcing, global climate and, through observation, can be used to partially monitor the first indirect effect. With its unique combination of multi-wavelength, multi-angle, total and polarized reflectance measurements, the Research Scanning Polarimeter (RSP) retrieves Nd with relatively few assumptions. The approach involves measuring cloud optical thickness, mean droplet extinction cross-section and cloud physical thickness. Polarimetric observations are capable of measuring the effective variance, or width, of the droplet size distribution. Estimating cloud geometrical thickness is also an important component of the polarimetric Nd retrieval, which is accomplished using polarimetric measurements in a water vapor absorption band to retrieve the amount of in-cloud water vapor and relating this to physical thickness. We highlight the unique abilities and quantify uncertainties of the polarimetric approach. We validate the approach using observational data from the North Atlantic and Marine Ecosystems Study (NAAMES). NAAMES targets specific phases in the seasonal phytoplankton lifecycle and ocean-atmosphere linkages. This study provides an excellent opportunity for the RSP to evaluate its approach of sensing Nd over a range of concentrations and cloud types with in situ measurements from a Cloud Droplet Probe (CDP). The RSP and CDP, along with an array of other instruments, are flown on the NASA C-130 aircraft, which flies in situ and remote sensing legs in sequence. Cloud base heights retrieved by the RSP compare well with those derived in situ (R=0.83) and by a ceilometer aboard the R.V. Atlantis (R=0.79). Comparing geometric mean values from 12 science flights throughout the NAAMES-1 and NAAMES-2 campaigns, we find a strong correlation between Nd retrieved by the RSP and CDP (R=0.96). A linear least squares fit has a slope of 0.92 and an intercept of 0.3 cm3. Uncertainty in this comparison can be attributed to cloud 3D effects, nonlinear liquid water profiles, multilayered clouds, measurement uncertainty, variation in spatial and temporal sampling, and assumptions used within the method. Radiometric uncertainties of the RSP measurements lead to biases on derived optical thickness and cloud physical thickness, but these biases largely cancel out when deriving Nd for most conditions and geometries. We find that a polarimetric approach to sensing Nd is viable and the RSP is capable of accurately retrieving Nd for a variety of cloud types and meteorological conditions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68261 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 228; 227-240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: On June 15th, 1991 the eruption of Mt. Pinatubo in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. Even though stratospheric winds climatologically tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We show how the absorption of radiation by sulfate aerosol is responsible for the spreading to the southern hemisphere through a middle stratospheric channel. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 general circulation model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem. Our simulations are in good agreement with SAGE-II and AVHRR data. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud, in agreement with the observations. At first, the volcanic cloud is transported from the latitude of the eruption to both hemispheres through a lower stratospheric pathway. Additionally, in the interactive simulations the absorption of long wave radiation from the volcanic sulfate induces a lofting of the cloud to the middle atmosphere and, at the same time, a divergent motion from the center of the cloud. Such motion spreads the volcanic cloud across the equator and to the tropics, where the background circulation carry it to higher latitudes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.ABS.5008.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-27
    Description: Aerosol volume size distribution (VSD) retrievals from the Aerosol Robotic Network (AERONET) aerosol monitoring network were obtained during multiple DRAGON (Distributed Regional Aerosol Gridded Observational Network) campaigns conducted in Maryland, California, Texas and Colorado from 2011 to 2014. These VSD retrievals from the field campaigns were used to make comparisons with near-simultaneous in situ samples from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team as part of four campaigns comprising the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. For coincident (1 h) measurements there were a total of 91 profile-averaged fine-mode size distributions acquired with the LARGE ultra-high sensitivity aerosol spectrometer (UHSAS) instrument matched to 153 AERONET size distributions retrieved from almucantars at 22 different ground sites. These volume size distributions were characterized by two fine-mode parameters, the radius of peak concentration (rpeak_conc) and the VSD fine-mode width (widthpeak_conc). The AERONET retrievals of these VSD fine-mode parameters, derived from ground-based almucantar sun photometer data, represent ambient humidity values while the LARGE aircraft spiral profile retrievals provide dried aerosol (relative humidity; RH〈 20 %) values. For the combined multiple campaign dataset, the average difference in rpeak_conc was 0:0330:035 m (ambient AERONET values were 15.8% larger than dried LARGE values), and the average difference in widthpeak_conc was 0:0420:039 m (AERONET values were 25.7% larger). For a subset of aircraft data, the LARGE data were adjusted to account for ambient humidification. For these cases, the AERONETLARGE average differences were smaller, with rpeak_conc differing by 0:0110:019 m (AERONET values were 5.2% larger) and widthpeak_conc average differences equal to 0:0300:037 m (AERONET values were 15.8% larger).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN75752 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 12; 10; 5289–5301
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN34769 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 16; 11; 7285-7924
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-20
    Description: Chemical transport model (CTM) hindcasts of ozone (O3) are useful for filling in observational gaps and providing context for observed O3 variability and trends. We use global networks of ozonesonde stations to evaluate the O3 profiles in two simulations running versions of the NASA Global Modeling Initiative (GMI) chemical mechanism. Both simulations are tied to the NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological reanalysis: 1) The GMI CTM, and 2) The MERRA-2 GMI Replay (M2 GMI). Both simulations start in 1980, and are compared against 〉50,000 ozonesonde profiles from 37 global stations from the tropics to the poles. The comparisons allow us to evaluate how the Replay technique affects modeled O3 distribution, how an updated chemical mechanism in the GMI CTM affects simulated tropospheric O3 amounts, and how observed O3 distributions compare to the full set of model output. In general, M2 GMI O3 is ~10% higher than in the GMI CTM, and shows global near-surface and tropical upper troposphere/lower stratosphere (UT/LS) high biases. The updated chemical mechanism in the GMI CTM reduces these high biases. Both simulations show similar negative biases in tropical free-tropospheric O3, especially during typical biomass burning seasons. The simulations are highly-correlated with ozonesonde measurements, particularly in the UT/LS (r 〉 0.8), showing the ability of MERRA-2 to capture tropopause height variations. Both simulations show improved correlations with ozonesonde data and smaller O3 biases in recent years. We expect to use the sonde/model comparisons to diagnose causes of disagreement and to gauge the feasibility of calculating multidecadal O3 trends from the model output.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN71189-2 , iCACGP/IGAC Joint Assembly 2018; Sep 25, 2018 - Sep 29, 2018; Takamatsu Kagawa; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM) and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth-System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace-gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This manuscript describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN49751 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466); 9; 8; 3019-3044
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...