ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: Studies of blowing snow over Antarctica have been limited greatly by the remoteness and harsh conditions of the region. Space-based observations are also of lesser value than elsewhere, given the similarities between ice clouds and snow-covered surfaces, both at infrared and visible wavelengths. It is only in recent years that routine ground-based observation programs have acquired sufficient data to overcome the gap in our understanding of surface blowing snow. In this paper, observations of blowing snow from visual observers' records as well as ground-based spectral and lidar programs at South Pole station are analyzed to obtain the first climatology of blowing snow over the Antarctic plateau. Occurrence frequencies, correlation with wind direction and speed, typical layer heights, as well as optical depths are determined. Blowing snow is seen in roughly one third of the visual observations and occurs under a narrow range of wind directions. The near-surface layers typically a few hundred meters thick emit radiances similar to those from thin clouds. Because blowing snow remains close to the surface and is frequently present, it will produce small biases in space-borne altimetry; these must be properly estimated and corrected.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA-TM-111358 , NAS 1.15:111358
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-06
    Description: Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4 percent per year. Cropland and prescribed/other fire types combined were responsible for 77 percent of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9 percent per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22544 , Journal of Geophysical Research: Biogeosciences (ISSN 2169-8953) (e-ISSN 2169-8961); 119 ; 4 ; 645-660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Historically, at the end of a NASA mission, earth and space science data were stored at NASA's National Space Science Data Center (NSSDC). The original data archive consisted of both magnetic tapes and film media. As data storage technology improved, data from later missions were stored on disks and platters and higher capacity magnetic media for online accessibility. To conserve physical space at NASA archive sites and to meet disaster recovery guidelines, historical data originally stored on magnetic tapes and film were moved to the Federal Archives and Record Center (FRC) as a temporary holding area until its long-term value was determined by NASA. All records at the FRC are controlled by the NASA Records Retention Schedule (NRRS) which determines the disposal date for each record. On that date, responsible NASA parties are notified that all scheduled records should be reviewed and assessed to determine if they continue to hold significant historical, scientific or administrative value. For Earth Science data records being held at FRC, the Earth Science Data and Information System (ESDIS) Project office is the party responsible for making the value assessment that determines which records warrant preservation and which are ready for proper disposal according to NASA guidelines. Once the data's long-term value is determined, ESDIS takes definitive steps to preserve this data for future discovery and access. Deteriorating media containing historic data of value are recalled from FRC and brought back to ESDIS. Through a tedious, laborious process, digital data are recovered and restored to modern formats with improved metadata and documentation to aid discovery. The restored digital products are then incorporated into our modern online archive, and made immediately accessible to the public. In this paper, we will discuss how we identify data-at-risk, ways to minimize data loss, how we plan for recovery, how we delegate recovery activities to our archive facilities, and how we make recovered data more accessible.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN63626 , AGU Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band. This band is free from interference from other gases and has temperature insensitive absorption lines. During the measurement the lasers are tuned on- and off- a selected CO2 line near 1572 nm and a selected O2 line near 768 nm in the Oxygen A band at kHz rates. The lasers use tunable diode seed lasers followed by fiber amplifiers, and have spectral widths much narrower than the gas absorption lines. The receiver uses a 1-m diameter telescope and photon counting detectors and measures the background light and energies of the laser echoes from the surface. The extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and offline surface echo via the differential optical absorption technique. Our technique rapidly alternates between several on-line wavelengths set to the sides of the selected gas absorption lines. It exploits the atmospheric pressure broadening of the lines to weight the measurement sensitivity to the atmospheric column below 5 km. This maximizes sensitivity to CO2 in the boundary layer, where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column will use an identical approach with an O2 line. Thee laser frequencies are tunable and have narrow (MHz) line widths. In combination with sensitive photon counting detectors these enables much higher spectral resolution and precision than is possible with passive spectrometer. 1aser backscatter profiles are also measured, which permits identifying measurements made to cloud tops and through aerosol layers. The measurement approach using lasers in common-nadir-zenith path allows retrieving CO2 column mixing ratios in the lower troposphere irrespective of sun angle. Pulsed laser signals, time gated receiver and a narrow receiver field-of-view are used to isolate the surface laser echo signals and to exclude photons scattered from clouds and aerosols. Nonetheless, the optical absorption change due to a change of a few ppO2 is small, 〈1 % which makes achieving the needed measurement sensitivities and stabilities quite challenging. Measurement SNRs and stabilities of 〉600:1 are needed to estimate CO2 mixing ratio at the 1-2 ppm level. We have calculated characteristics of the technique and have demonstrated aspects of the laser, detector and receiver approaches in th e laboratory We have also measured O2 in an absorption cell, and made C02 measurements over a 400 m long (one way) horizontal path using a sensor breadboard. We will describe these and more details of our approach in the paper.
    Keywords: Earth Resources and Remote Sensing
    Type: 4th International Workshop on Greenhouse Gas Measurements from Space; Jun 25, 2007 - Jun 27, 2007; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: An imaging lidar system is being developed for use in navigation, relative to the local terrain. This technology will potentially be used for future spacecraft landing on the Moon. Systems like this one could also be used on Earth for diverse purposes, including mapping terrain, navigating aircraft with respect to terrain and military applications. The system has been field-tested aboard a helicopter in the Mojave Desert. When this system was designed, digitizers with sufficient sampling rate (2 GHz) were only available with very limited memory. Also, it was desirable to limit the amount of data to be transferred between the digitizer and the mass storage between individual frames. One of the novelty design features of this system was to design the system around the limited amount of memory of the digitizer. The system is required to operate over an altitude (distance) range from a few meters to approximately 1 km, but for each scan across the full field of view, the digitizer memory is only able to hold data for an altitude range no more than 100 m. Data acquisition methods in support of the limited 100 m wide altitude range are described.
    Keywords: Earth Resources and Remote Sensing
    Type: NPO-44586 , NASA Tech Briefs, August 2008; 12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Below is the 1st year progress report for NAG5-13435 "New Retrieval Algorithms for Geophysical Products from GLI and MODIS Data". Activity on this project has been coordinated with our NASA DB project NAG5-9604. For your convenience, this report has six sections and an Appendix. Sections I - III discuss specific activities undertaken during the past year to analyze/use MODIS data. Section IV formally states our intention to no longer pursue any research using JAXA's (formerly NASDA's) GLI instrument which catastrophically failed very early after launch (also see the Appendix). Section V provides some indications of directions for second year activities based on our January 2004 telephone discussions and email exchanges. A brief summary is given in Section VI.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN12539 , 2013 AGU Fall Meeting; Dec 09, 2013 - Dec 12, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-15
    Description: Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality characterization by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground monitors and progressively downwind of emission sources. We present a physical approach to constraining regional-scale estimates of PM(2.5), its major chemical component species estimates, and related uncertainty estimates of chemical transport model (CTM; e.g., the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System's Terra satellite. The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that train statistical regression models, the technique developed here leverages CTM physical constraints such as the conservation of aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships between observed species concentrations and emission sources. Aerosol air mass types over populated regions of central California are characterized using satellite data acquired during the 2013 San Joaquin field deployment of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project. We investigate the optimal application of incorporating 275m horizontal-resolution aerosol air-mass-type maps and total-column aerosol optical depth from the MISR Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM(2.5) fields progressively downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R2 and RMSE values for the model, constrained by both satellite and surface monitor measurements based on 10-fold cross-validation, are 0.79 and 0.33 for PM(2.5), 0.88 and 0.65 for NO3(), 0.78 and 0.23 for SO4(2), 1.00 and 1.01 for NH4(+), 0.73 and 0.23 for OC, and 0.31 and 0.65 for EC, respectively. Regional cross-validation temporal and spatiotemporal R2 results for the satellite-based PM(2.5) improve by 30% and 13%, respectively, in comparison to unconstrained CTM simulations and provide finer spatial resolution. SO4(2) cross-validation values showed the largest spatial and spatiotemporal R(2) improvement, with a 43% increase. Assessing this physical technique in a well-instrumented region opens the possibility of applying it globally, especially over areas where surface air quality measurements are scarce or entirely absent.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN63234 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 17; 12891-12913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...