ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (7)
  • 1
    Publication Date: 2019-07-06
    Description: Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4 percent per year. Cropland and prescribed/other fire types combined were responsible for 77 percent of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9 percent per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22544 , Journal of Geophysical Research: Biogeosciences (ISSN 2169-8953) (e-ISSN 2169-8961); 119 ; 4 ; 645-660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band. This band is free from interference from other gases and has temperature insensitive absorption lines. During the measurement the lasers are tuned on- and off- a selected CO2 line near 1572 nm and a selected O2 line near 768 nm in the Oxygen A band at kHz rates. The lasers use tunable diode seed lasers followed by fiber amplifiers, and have spectral widths much narrower than the gas absorption lines. The receiver uses a 1-m diameter telescope and photon counting detectors and measures the background light and energies of the laser echoes from the surface. The extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and offline surface echo via the differential optical absorption technique. Our technique rapidly alternates between several on-line wavelengths set to the sides of the selected gas absorption lines. It exploits the atmospheric pressure broadening of the lines to weight the measurement sensitivity to the atmospheric column below 5 km. This maximizes sensitivity to CO2 in the boundary layer, where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column will use an identical approach with an O2 line. Thee laser frequencies are tunable and have narrow (MHz) line widths. In combination with sensitive photon counting detectors these enables much higher spectral resolution and precision than is possible with passive spectrometer. 1aser backscatter profiles are also measured, which permits identifying measurements made to cloud tops and through aerosol layers. The measurement approach using lasers in common-nadir-zenith path allows retrieving CO2 column mixing ratios in the lower troposphere irrespective of sun angle. Pulsed laser signals, time gated receiver and a narrow receiver field-of-view are used to isolate the surface laser echo signals and to exclude photons scattered from clouds and aerosols. Nonetheless, the optical absorption change due to a change of a few ppO2 is small, 〈1 % which makes achieving the needed measurement sensitivities and stabilities quite challenging. Measurement SNRs and stabilities of 〉600:1 are needed to estimate CO2 mixing ratio at the 1-2 ppm level. We have calculated characteristics of the technique and have demonstrated aspects of the laser, detector and receiver approaches in th e laboratory We have also measured O2 in an absorption cell, and made C02 measurements over a 400 m long (one way) horizontal path using a sensor breadboard. We will describe these and more details of our approach in the paper.
    Keywords: Earth Resources and Remote Sensing
    Type: 4th International Workshop on Greenhouse Gas Measurements from Space; Jun 25, 2007 - Jun 27, 2007; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.
    Keywords: Earth Resources and Remote Sensing
    Type: 8th TransCom Workshop; Apr 24, 2007 - Apr 27, 2007; West Lafayette, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: The BOREAS TE-4 team collected steady-state gas exchange and reflectance data from several species in the BOREAS SSA during 1994 and in the NSA during 1996. Measurements of light, CO2, temperature, and humidity response curves were made by the BOREAS TE-4 team during the summers of 1994 and 1996 using intact attached leaves of boreal forest species located in the BOREAS SSA and NSA. These measurements were conducted to calibrate models used to predict photosynthesis, stomatal conductance, and leaf respiration. The 1994 and 1996 data can be used to construct plots of response functions or for parameterizing models. Parameter values are suitable for application in SiB2 (Sellers et al., 1996) or the leaf model of Collatz et al. (1991), and programs can be obtained from the investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/TM-2000-209891/VOL135 , Rept-2000-03136-0/VOL135 , NAS 1.15:209891/VOL135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Disturbances are a major determinant of forest carbon stocks and uptake. They generally reduce land carbon stocks but also initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock increase in US forestlands. As managers and policy makers increasingly look to forests for climate protection and mitigation, and because of increasing concern about changes in disturbance intensity and frequency, there is a need for synthesis and integration of current understanding about the role of disturbances and other processes in governing forest carbon cycle dynamics, and the likely future of this and other sinks for atmospheric carbon. This paper aims to address that need by providing a quantitative review of the distribution, extent and carbon impacts of the major disturbances active in the US. We also review recent trends in disturbances, climate, and other global environmental changes and consider their individual and collective contributions to the US carbon budget now and in the likely future. Lastly, we identify some key challenges and opportunities for future research needed to improve current understanding, advance predictive capabilities, and inform forest management in the face of these pressures. Harvest is found to be the most extensive disturbance both in terms of area and carbon impacts, followed by fire, windthrow and bark beetles, and lastly droughts. Collectively these lead to the gross loss of about 200 Tg C y(exp -1) in live biomass annually across the conterminous US. At the same time, the net change in forest carbon stocks is positive (190 Tg C y(exp -1)), indicating not only forest resilience but also an apparently large response to growth enhancements such as fertilization by CO2 and nitrogen. Uncertainty about disturbance legacies, disturbance interactions, likely trends, and global change factors make the future of the US forest carbon sink unclear. While there is scope for management to enhance carbon sinks in US forests, tradeoffs with other values and uses are likely to significantly limit practical implementation. Continued and expanded remote sensing and field-based monitoring capabilities and manipulative experimentation are needed to improve understanding of the US forest carbon sink, and assess how disturbance processes are responding to the pressures of global environmental change. In addition, continued development and application of holistic, decision support tools that consider a range of forest values are needed to enable managers and policy makers to use the best available information for guiding forest resources now and into the future.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN41018 , Global and Planetary Change (ISSN 0921-8181); 143; 66-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.ABS.4474.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-26
    Description: The precise contribution of the two major sinks for anthropogenic CO2 emissions, terrestrial vegetation and the ocean, and their location and year-to-year variability are not well understood. Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 are expected to benefit from the increasing measurement density brought by recent in situ and remote CO2 observations. We uniquely apply a batch Bayesian synthesis inversion at relatively high resolution to in situ surface observations and bias-corrected GOSAT satellite column CO2 retrievals to deduce the global distributions of natural CO2 fluxes during 2009-2010. Our objectives include evaluating bottom-up prior flux estimates, assessing the value added by the satellite data, and examining the impacts of inversion technique and assumptions on posterior fluxes and uncertainties. The GOSAT inversion is generally better constrained than the in situ inversion, with smaller posterior regional flux uncertainties and correlations, because of greater spatial coverage, except over North America and high-latitude ocean. Complementarity of the in situ and GOSAT data enhances uncertainty reductions in a joint inversion; however, spatial and temporal gaps in sampling still limit the ability to accurately resolve fluxes down to the subcontinental scale. The GOSAT inversion produces a shift in the global CO2 sink from the tropics to the north and south relative to the prior, and an increased source in the tropics of ~2 Pg C y(exp -1) relative to the in situ inversion, similar to what is seen in studies using other inversion approaches. This result may be driven by sampling and residual retrieval biases in the GOSAT data, as suggested by significant discrepancies between posterior CO2 distributions and surface in situ and HIPPO mission aircraft data. While the shift in the global sink appears to be a robust feature of the inversions, the partitioning of the sink between land and ocean in the inversions using either in situ or GOSAT data is found to be sensitive to prior uncertainties because of negative correlations in the flux errors. The GOSAT inversion indicates significantly less CO2 uptake in summer of 2010 than in 2009 across northern regions, consistent with the impact of observed severe heat waves and drought. However, observations from an in situ network in Siberia imply that the GOSAT inversion exaggerates the 2010-2009 difference in uptake in that region, while the prior CASA-GFED model of net ecosystem production and fire emissions reasonably estimates that quantity. The prior, in situ posterior, and GOSAT posterior all indicate greater uptake over North America in spring to early summer of 2010 than in 2009, consistent with wetter conditions. The GOSAT inversion does not show the expected impact on fluxes of a 2010 drought in the Amazon; evaluation of posterior mole fractions against local aircraft profiles suggests that time-varying GOSAT coverage can bias estimation of flux interannual variability in this region.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN61534 , Atmospheric Chemistry Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 15; 11,097-11,124
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...