ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from a Japanese launch site in November 1997. This instrument is a follow-on to the Earth Radiation Budget Experiment (ERBE) begun in the 1980's. The instrument will measure the radiation budget - incoming and outgoing radiant energy - of the Earth. It will establish a baseline and look for climatic trends. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children from around the globe in making ground truth measurements at the time of a CERES overpass. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. This experience is helping guide the development of the S'COOL project. National testing is planned for April 1997, international testing for July 1997, and global testing for October 1997. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students.
    Keywords: Earth Resources and Remote Sensing
    Type: The Sixth Alumni Conference of the International Space University; 150-157; NASA-CP-3355
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: There are 2 CERES scanning radiometer instruments aboard the TERRA spacecraft, one for mapping the solar radiation reflected from the Earth and the outgoing longwave radiation and the other for measuring the anisotropy of the radiation. Each CERES instrument has on-board calibration devices, which have demonstrated that from ground to orbit the broadband total and shortwave sensor responses maintained their ties to the International Temperature Scale of 1990 at precisions approaching radiances have been validated in orbit to +/- 0.3 % (0.3 W/sq m sr). Top of atmosphere fluxes are produced by use of the CERES data alone. By including data from other instruments, surface radiation fluxes and radiant fluxes within the atmosphere and at its top, shortwave and longwave, for both up and down components, are derived. Validation of these data products requires ground and aircraft measurements of fluxes and of cloud properties.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing; Sep 25, 2000 - Sep 29, 2000; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Clouds and Earth's Radiant Energy System (CERES) missions were designed to measure broadband earth-reflected shortwave solar (0.3 micrometers to less than 5.0 micrometers) and earth-emitted longwave (5.0 micrometers to greater than 100 micrometers) radiances as well as earth-emitted narrow-band radiances in the water vapor window region between 8 micrometers and 12 micrometers. However, the CERES scanning thermistor bolometer sensor zero-radiance offsets were found to vary as much as 1.0 Wm (exp -2) sr (exp -1) with the scan angle measurement geometry due to gravitational forces and systematic electronic noise. To minimize the gravitational effects, the Tropical Rainfall Measuring Mission (TRMM) Spacecraft CERES sensors' offsets were derived on-orbit as functions of scan elevation and azimuth angles from the January 7-8, 1998 radiometric observations of deep cold space, representative of a 3 K blackbody. In this paper, the TRMM/CERES six orbit data base of on-orbit derived offsets is presented and analyzed to define the sampling requirements for the CERES sensors located on the Earth Science Enterprise (ESE) Terra Spacecraft and on the Earth Observing System (EOS) Afternoon (PM-1) Spacecraft, scheduled for launches in 1999 and 2000, respectively. Analyses of the TRMM/CERES shortwave sensor earth radiance measurements indicate that offsets can be determined on-orbit at the plus or minus 0.02 Wm (exp -2) sr (exp -1) precision level. Offset measuring techniques and sampling requirements are discussed for the TRMM and ESE missions. Ground, pre-launch Terra CERES cross-track scan offsets are presented and described which were measured as a function of scan angle.
    Keywords: Earth Resources and Remote Sensing
    Type: Earth Observing Systems; Jul 18, 1999 - Jul 20, 1999; Denver, CO; United States|Proceedings of Earth Observing Systems IV (ISSN 0277-786X); 3750; 481-493
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...