ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-29
    Description: The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth's sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN70094 , Frontiers in Earth Science (e-ISSN 2296-6463)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to 〉30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5998.2012 , Remote Sensing of Environment; 118; 284-308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The ObseRvations of Aerosols above Clouds and their interactions (ORACLES) project is making a series of field deployments to the southeastern Atlantic with NASA ER-2 and P3 aircraft to acquire both detailed remote sensing observations and in situ measurements of the aerosols and clouds in that region. This area is home to one of the largest low-level cloud decks on Earth that is seasonally affected by vast plumes of smoke from biomass burning, which in effect provides a natural experiment testing the radiative and microphysical interactions between the smoke and the clouds. The downward solar radiation at the surface, or cloud top, is always reduced by the presence of smoke. However, whether the amount of sunlight reflected back out to space is increased, or decreased by the presence of smoke is sensitively dependent on the brightness of the clouds and the fraction of light that the smoke absorbs each time light hits a smoke particle. In this study we use data from the Research Scanning Polarimeter, an along track scanning instrument, that provides measurements of the Stokes parameters I, Q and U at 410, 470, 555, 670, 865, 960, 1590, 1880 and 2260 nm at 150 viewing angles over a range of +/- 60 from nadir for each contiguous sub-aircraft pixel (~ 300 m in size). A retrieval algorithm is applied to the data acquired with a table look up technique, similar to that of the operational POLDER algorithm, to provide a first guess of the complex refractive index, optical depth and size distribution of the smoke particles together with cloud droplet size and optical depth. A subsequent iterative fitting procedure, where the fact that the doubling/adding method allows the construction of the Green's function for the radiative transfer equation, is used to obtain an efficient and statistically optimal estimate of the aerosol and cloud retrieval parameters. These retrieval parameters are evaluated against in situ observations, when available, and the optical depth and intensive lidar variables that are measured by the High Spectral Resolution Lidar 2. Finally, the aerosol and cloud retrievals are used to evaluate the variations in top of the atmosphere, surface/cloud top shortwave radiative forcing and atmospheric absorption that are caused by variations in the smoke and clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: A11C-1897 , GSFC-E-DAA-TN50461 , American Geophysical Union (AGU) Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-21
    Description: Comprehensive polarimetric closure is demonstrated using observations from two in-situ polarimeters and Vector Radiative Transfer (VRT) modeling. During the Ship-Aircraft Bio-Optical Research (SABOR) campaign, the novel CCNY HyperSAS-POL polarimeter was mounted on the bow of the R/V Endeavor and acquired hyperspectral measurements from just above the surface of the ocean, while the NASA GISS Research Scanning Polarimeter was deployed onboard the NASA LaRC's King Air UC-12B aircraft. State-of-the-art, ancillary measurements were used to characterize the atmospheric and marine contributions in the VRT model, including those of the High Spectral Resolution Lidar (HSRL), the AErosol RObotic NETwork for Ocean Color (AERONET-OC), a profiling WETLabs ac-9 spectrometer and the Multi-spectral Volume Scattering Meter (MVSM). An open-ocean and a coastal scene are analyzed, both affected by complex aerosol conditions. In each of the two cases, it is found that the model is able to accurately reproduce the Stokes components measured simultaneously by each polarimeter at different geometries and viewing altitudes. These results are mostly encouraging, considering the different deployment strategies of RSP and HyperSAS-POL, which imply very different sensitivities to the atmospheric and ocean contributions, and open new opportunities in above-water polarimetric measurements. Furthermore, the signal originating from each scene was propagated to the top of the atmosphere to explore the sensitivity of polarimetric spaceborne observations to changes in the water type. As expected, adding polarization as a measurement capability benefits the detection of such changes, reinforcing the merits of the full-Stokes treatment in modeling the impact of atmospheric and oceanic constituents on remote sensing observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN49053 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 206; 375-390
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...